Knowledge graph-based convolutional network coupled with sentiment analysis towards enhanced drug recommendation

推荐系统 计算机科学 图形 功率图分析 多样性(控制论) 知识图 情报检索 数据科学 机器学习 人工智能 理论计算机科学
作者
Hajira Saadat,Babar Shah,Zahid Halim,Sajid Anwar
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:21 (4): 983-994 被引量:10
标识
DOI:10.1109/tcbb.2022.3225234
摘要

Recommending appropriate drugs to patients based on their history and symptoms is a complex real-world problem. Knowing whether a drug is useful without its consumption by a variety of people followed by proper evaluation is a challenge. Modern-day recommender systems can assist in this provided they receive large data to learn. Public reviews on various drugs are available for knowledge sharing. These reviews assist in recommending the best and most appropriate option to the user. The explicit feedback underpins the entire recommender system. This work develops a novel knowledge graph-based convolutional network for recommending drugs. The knowledge graph is coupled with sentiment analysis extracted from the public reviews on drugs to enhance drug recommendations. For each drug that has been used previously, sentiments have been analyzed to determine which one has the most effective reviews. The knowledge graph effectively captures user-item relatedness by mining its associated attributes. Experiments are performed on public benchmarks and a comparison is made with closely related state-of-the-art works. Based on the obtained results, the current work performs better than the past contributions by achieving up to 98.7% Area Under Curve (AUC) score.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
周周发布了新的文献求助10
1秒前
2秒前
九尾狐完成签到,获得积分20
2秒前
丰知然应助科研通管家采纳,获得10
4秒前
丰知然应助科研通管家采纳,获得10
4秒前
深情安青应助科研通管家采纳,获得10
4秒前
顾矜应助科研通管家采纳,获得10
4秒前
丰知然应助科研通管家采纳,获得10
4秒前
FashionBoy应助科研通管家采纳,获得10
4秒前
丰知然应助科研通管家采纳,获得10
4秒前
丰知然应助科研通管家采纳,获得10
4秒前
丰知然应助科研通管家采纳,获得10
4秒前
wwww0wwww应助科研通管家采纳,获得10
5秒前
完美世界应助科研通管家采纳,获得10
5秒前
丰知然应助科研通管家采纳,获得10
5秒前
5秒前
丰知然应助科研通管家采纳,获得10
5秒前
Lucas应助科研通管家采纳,获得10
5秒前
5秒前
6秒前
ceeray23应助深水中的阳光采纳,获得10
9秒前
xiongdi521发布了新的文献求助10
11秒前
11秒前
还行吧完成签到 ,获得积分10
11秒前
脑洞疼应助ice采纳,获得10
12秒前
12秒前
周周完成签到,获得积分20
13秒前
11完成签到 ,获得积分10
13秒前
劲秉应助没有你不行采纳,获得10
14秒前
叶叶叶完成签到,获得积分10
14秒前
xiongdi521完成签到,获得积分10
14秒前
17秒前
我是老大应助shelly0621采纳,获得10
17秒前
小马哥发布了新的文献求助10
18秒前
负责流口水完成签到,获得积分10
19秒前
19秒前
19秒前
ya发布了新的文献求助10
22秒前
23秒前
demo应助沉静茗采纳,获得30
25秒前
高分求助中
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
Relativism, Conceptual Schemes, and Categorical Frameworks 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3462718
求助须知:如何正确求助?哪些是违规求助? 3056227
关于积分的说明 9051055
捐赠科研通 2745844
什么是DOI,文献DOI怎么找? 1506627
科研通“疑难数据库(出版商)”最低求助积分说明 696181
邀请新用户注册赠送积分活动 695700