已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

SE-TCN network for continuous estimation of upper limb joint angles

外骨骼 接头(建筑物) 卷积神经网络 计算机科学 肘部 人工智能 上肢 反向传播 均方误差 肩关节 机器人 模拟 计算机视觉 人工神经网络 模式识别(心理学) 数学 物理医学与康复 工程类 解剖 结构工程 统计 医学
作者
Xiaoguang Liu,Jiawei Wang,Tie Liang,Cunguang Lou,Hongrui Wang,Xiuling Liu
出处
期刊:Mathematical Biosciences and Engineering [American Institute of Mathematical Sciences]
卷期号:20 (2): 3237-3260 被引量:6
标识
DOI:10.3934/mbe.2023152
摘要

<abstract> <p>The maturity of human-computer interaction technology has made it possible to use surface electromyographic signals (sEMG) to control exoskeleton robots and intelligent prostheses. However, the available upper limb rehabilitation robots controlled by sEMG have the shortcoming of inflexible joints. This paper proposes a method based on a temporal convolutional network (TCN) to predict upper limb joint angles by sEMG. The raw TCN depth was expanded to extract the temporal features and save the original information. The timing sequence characteristics of the muscle blocks that dominate the upper limb movement are not apparent, leading to low accuracy of the joint angle estimation. Therefore, this study squeeze-and-excitation networks (SE-Net) to improve the network model of the TCN. Finally, seven movements of the human upper limb were selected for ten human subjects, recording elbow angle (EA), shoulder vertical angle (SVA), and shoulder horizontal angle (SHA) values during their movements. The designed experiment compared the proposed SE-TCN model with the backpropagation (BP) and long short-term memory (LSTM) networks. The proposed SE-TCN systematically outperformed the BP network and LSTM model by the mean <italic>RMSE</italic> values: by 25.0 and 36.8% for EA, by 38.6 and 43.6% for SHA, and by 45.6 and 49.5% for SVA, respectively. Consequently, its <italic>R</italic><sup>2</sup> values exceeded those of BP and LSTM by 13.6 and 39.20% for EA, 19.01 and 31.72% for SHA, and 29.22 and 31.89% for SVA, respectively. This indicates that the proposed SE-TCN model has good accuracy and can be used to estimate the angles of upper limb rehabilitation robots in the future.</p> </abstract>

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Hh发布了新的文献求助10
2秒前
2秒前
2秒前
3秒前
3秒前
lynn完成签到,获得积分10
4秒前
5秒前
7秒前
傲娇伟诚发布了新的文献求助10
8秒前
yat完成签到 ,获得积分10
9秒前
10秒前
12秒前
13秒前
13秒前
13秒前
关卉完成签到 ,获得积分10
13秒前
科研通AI5应助Hunter采纳,获得10
14秒前
15秒前
16秒前
18秒前
qiuqiu发布了新的文献求助10
18秒前
mao关注了科研通微信公众号
20秒前
NexusExplorer应助一一采纳,获得10
20秒前
wxyllxx发布了新的文献求助10
22秒前
wxyllxx发布了新的文献求助10
22秒前
灵巧听露发布了新的文献求助30
22秒前
wxyllxx发布了新的文献求助10
23秒前
wxyllxx发布了新的文献求助10
23秒前
wxyllxx发布了新的文献求助10
23秒前
wxyllxx发布了新的文献求助10
23秒前
wxyllxx发布了新的文献求助10
23秒前
wxyllxx发布了新的文献求助10
23秒前
wxyllxx发布了新的文献求助10
23秒前
wxyllxx发布了新的文献求助10
24秒前
24秒前
wxyllxx发布了新的文献求助10
24秒前
wxyllxx发布了新的文献求助10
24秒前
24秒前
wxyllxx发布了新的文献求助10
24秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 720
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Typology of Conditional Constructions 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3566416
求助须知:如何正确求助?哪些是违规求助? 3139118
关于积分的说明 9430589
捐赠科研通 2839982
什么是DOI,文献DOI怎么找? 1560890
邀请新用户注册赠送积分活动 730075
科研通“疑难数据库(出版商)”最低求助积分说明 717759