化学
镥
配体(生物化学)
吸附
纳米材料
朗缪尔吸附模型
洗脱
金属有机骨架
无机化学
纳米技术
有机化学
色谱法
氧化物
受体
材料科学
生物化学
钇
作者
Md. Nazmul Hasan,Md. Shad Salman,Md. Munjur Hasan,Khadiza Tul Kubra,Md. Chanmiya Sheikh,Ariyan Islam Rehan,Adiba Islam Rasee,Mrs Eti Awual,R.M. Waliullah,Mohammed Sohrab Hossain,A. K. M. Sadrul Islam,Shahjalal Khandaker,Abdulmohsen Khalaf Dhahi Alsukaibi,Hamed M. Alshammari,Md. Rabiul Awual
标识
DOI:10.1016/j.molstruc.2022.134795
摘要
Organic ligand-based sustainable composite hybrid material (CMHs) was prepared for the sensitive and selective adsorption of Lutetium (Lu(III)) from waste samples. The hard and soft donor organic ligand of (3-(3-(methoxycarbonyl)benzylidene) hydrazinyl)benzoic acid (MBHB) was immobilized according to the direct approach. The carrier silica and ligand-embedded CMHs were characterized systematically. The adsorption of Lu(III) ion was significantly influenced by the solution pH due to the protonation form of the synthesized organic ligand. However, the slightly acidic pH (4.0) was chosen for sensitive and selective separation and adsorption of Lu(III) ions. The co-existing diverse metal ions were not interfered with during the adsorption of the Lu(III) ion because of the high affinity of the Lu(III) ion to CMHs at the optimum experimental protocol. It was expected that the bond distance between Lu-O was shorter than the other bond length of Lu-N atoms of the organic ligand. The Langmuir adsorption isotherm model was defined according to the morphology of the material and implemented to validate the adsorption isotherms according to the homogeneous ordered structures. The adsorption capacity was 171.76 mg/g as expected due to the high surface area of the CMHs. The adsorbed Lu(III) ion was completely eluted from the CHMs with the eluent of 0.35 M HNO3 and the regenerated material was used in several cycles without significant loss in its original performances. Therefore, it is expected that the ligand-based CMHs may hold huge potential in applications and may be scaled up for commercial applications, including specific separation, adsorption, and recovery of Lu(III) ions from waste samples.
科研通智能强力驱动
Strongly Powered by AbleSci AI