Dual polarimetric decomposition in Sentinel-1 images to estimate aboveground biomass of arboreal caatinga

旋光法 遥感 环境科学 生物群落 亚马逊雨林 生物量(生态学) 物候学 树木异速生长 数学 地理 生态系统 生态学 物理 生物 生物量分配 光学 散射
作者
Janisson Batista de Jesus,Tatiana Mora Kuplich,Íkaro Daniel de Carvalho Barreto,Dráuzio Correia Gama
出处
期刊:Remote Sensing Applications: Society and Environment [Elsevier]
卷期号:29: 100897-100897 被引量:4
标识
DOI:10.1016/j.rsase.2022.100897
摘要

The Caatinga is a typical biome of the Brazilian semiarid region, and there is a lack of studies to estimate its plant biomass using SAR images. Also, there are no studies at this topic that use information from polarimetric decomposition. Therefore, this study aimed to estimate aboveground biomass (AGB) of the arboreal Caatinga under different phenological conditions using entropy and alpha angle data obtained by different polarimetric filters by Dual Polarimetric Decomposition in Sentinel-1 SAR images. The forest inventory was carried out in 19 sample plots with an area of 30 × 30 m in the Caatinga of Sergipe state, Brazil, using an allometric equation to estimate the AGB. Sentinel-1 images were obtained in 3 phenological conditions of the Caatinga (Greenness, Intermediate and Dryness) to which polarimetric filters (BoxCar - BC, IDAN, Improved Lee Sigma - ILS and Refined Lee - RL) were applied and obtained the entropy (H) and alpha angle (α) attributes after Dual Polarimetric Decomposition. The attributes of each polarimetric filter were related to the AGB using linear regressions. The combination of attributes provided higher accuracy than individual estimates: data from Intermediate period provided higher accuracy for AGB estimates, using H of the IDAN filtering and α using ILS (R2: 32.05%). The attributes generated through Dual Polarimetric Decomposition in Sentinel-1 images showed a low relationship with the AGB of the Caatinga in the study area. Nevertheless, the study made it possible to indicate which polarimetric filters depending on the different leaf cover conditions in the Caatinga offer greater precision in relation to the measured AGB, serving as the basis for future studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
glany发布了新的文献求助10
1秒前
1秒前
1秒前
1秒前
1秒前
庄彧完成签到 ,获得积分0
1秒前
小青发布了新的文献求助10
2秒前
2秒前
熊大完成签到,获得积分10
2秒前
TCC发布了新的文献求助10
2秒前
aaaa完成签到,获得积分10
2秒前
清秀曼彤发布了新的文献求助10
2秒前
欢喜语柳发布了新的文献求助10
2秒前
阿七完成签到,获得积分10
3秒前
Leo000007发布了新的文献求助10
3秒前
喜悦音响完成签到,获得积分10
3秒前
韩梅完成签到,获得积分20
3秒前
mzm完成签到,获得积分10
3秒前
Trost发布了新的文献求助10
3秒前
Ava应助聪明胡图图采纳,获得10
3秒前
Akim应助Ll采纳,获得10
3秒前
4秒前
猫猫头发布了新的文献求助10
4秒前
4秒前
4秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
binghe411完成签到,获得积分10
5秒前
6秒前
阔达的扬完成签到,获得积分10
6秒前
6秒前
gtxy完成签到 ,获得积分10
6秒前
6秒前
尕翠完成签到,获得积分10
6秒前
6秒前
6秒前
科研通AI6应助ccc采纳,获得10
6秒前
88发布了新的文献求助10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Process Plant Design for Chemical Engineers 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Signals, Systems, and Signal Processing 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5612759
求助须知:如何正确求助?哪些是违规求助? 4697823
关于积分的说明 14895857
捐赠科研通 4734427
什么是DOI,文献DOI怎么找? 2546674
邀请新用户注册赠送积分活动 1510710
关于科研通互助平台的介绍 1473494