Turning words into numbers: Assessing work attitudes using natural language processing.

心理信息 心理学 感知 应用心理学 结构效度 构造(python库) 利克特量表 社会心理学 计算机科学 自然语言处理 心理测量学 梅德林 临床心理学 发展心理学 法学 程序设计语言 神经科学 政治学
作者
Andrew B. Speer,James Perrotta,Andrew P. Tenbrink,Lauren J. Wegmeyer,Angie Y. Delacruz,Jenna Bowker
出处
期刊:Journal of Applied Psychology [American Psychological Association]
卷期号:108 (6): 1027-1045 被引量:9
标识
DOI:10.1037/apl0001061
摘要

Researchers and practitioners are often interested in assessing employee attitudes and work perceptions. Although such perceptions are typically measured using Likert surveys or some other closed-end numerical rating format, many organizations also have access to large amounts of qualitative employee data. For example, open-ended comments from employee surveys allow workers to provide rich and contextualized perspectives about work. Unfortunately, there are practical challenges when trying to understand employee perceptions from qualitative data. Given this, the present study investigated whether natural language processing (NLP) algorithms could be developed to automatically score employee comments according to important work attitudes and perceptions. Using a large sample of employees, algorithms were developed to translate text into scores that reflect what comments were about (theme scores) and how positively targeted constructs were described (valence scores) for 28 work constructs. The resulting algorithms and scores are labeled the Text-Based Attitude and Perception Scoring (TAPS) dictionaries, which are made publicly available and were built using a mix of count-based scoring and transformer neural networks. The psychometric properties of the TAPS scores were then investigated. Results showed that theme scores differentiated responses based on their likelihood to discuss specific constructs. Additionally, valence scores exhibited strong evidence of reliability and validity, particularly, when analyzed on text responses that were more relevant to the construct of interest. This suggests that researchers and practitioners should explicitly design text prompts to elicit construct-related information if they wish to accurately assess work attitudes and perceptions via NLP. (PsycInfo Database Record (c) 2023 APA, all rights reserved).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星星银河云朵和月亮完成签到,获得积分10
刚刚
靓丽的花卷完成签到,获得积分10
刚刚
张帆远航完成签到,获得积分10
刚刚
平常的雁凡完成签到,获得积分20
刚刚
HMONEY完成签到,获得积分10
2秒前
3秒前
Binbin完成签到 ,获得积分10
4秒前
大方谷梦完成签到 ,获得积分10
4秒前
5秒前
香蕉觅云应助LCct采纳,获得10
6秒前
ding应助的呀呀采纳,获得10
7秒前
脆脆应答完成签到,获得积分10
7秒前
9秒前
小奥雄完成签到,获得积分10
10秒前
121发布了新的文献求助10
10秒前
孟伟完成签到,获得积分10
10秒前
11秒前
Xl完成签到,获得积分10
12秒前
12秒前
12秒前
hyz完成签到,获得积分10
13秒前
晚晚完成签到 ,获得积分10
13秒前
CipherSage应助一看论文就困采纳,获得10
14秒前
俞铭完成签到,获得积分10
14秒前
wpy完成签到 ,获得积分20
14秒前
drhu关注了科研通微信公众号
16秒前
神说要有光完成签到 ,获得积分10
17秒前
赛赛完成签到 ,获得积分10
18秒前
18秒前
Kay76完成签到,获得积分10
18秒前
发酒疯很方便吃完成签到,获得积分10
19秒前
急急急完成签到,获得积分10
19秒前
消消消消气完成签到 ,获得积分10
20秒前
21秒前
小龙发布了新的文献求助10
21秒前
小秃兄发布了新的文献求助10
21秒前
RerrentLinden完成签到,获得积分10
22秒前
开朗的踏歌完成签到,获得积分10
22秒前
金花猪饲养员完成签到,获得积分10
22秒前
斯文败类应助121采纳,获得10
22秒前
高分求助中
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3121786
求助须知:如何正确求助?哪些是违规求助? 2772169
关于积分的说明 7711621
捐赠科研通 2427558
什么是DOI,文献DOI怎么找? 1289401
科研通“疑难数据库(出版商)”最低求助积分说明 621451
版权声明 600169