清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Turning words into numbers: Assessing work attitudes using natural language processing.

心理信息 心理学 感知 应用心理学 结构效度 构造(python库) 利克特量表 社会心理学 计算机科学 自然语言处理 心理测量学 梅德林 临床心理学 发展心理学 法学 程序设计语言 神经科学 政治学
作者
Andrew B. Speer,James Perrotta,Andrew P. Tenbrink,Lauren J. Wegmeyer,Angie Y. Delacruz,Jenna Bowker
出处
期刊:Journal of Applied Psychology [American Psychological Association]
卷期号:108 (6): 1027-1045 被引量:13
标识
DOI:10.1037/apl0001061
摘要

Researchers and practitioners are often interested in assessing employee attitudes and work perceptions. Although such perceptions are typically measured using Likert surveys or some other closed-end numerical rating format, many organizations also have access to large amounts of qualitative employee data. For example, open-ended comments from employee surveys allow workers to provide rich and contextualized perspectives about work. Unfortunately, there are practical challenges when trying to understand employee perceptions from qualitative data. Given this, the present study investigated whether natural language processing (NLP) algorithms could be developed to automatically score employee comments according to important work attitudes and perceptions. Using a large sample of employees, algorithms were developed to translate text into scores that reflect what comments were about (theme scores) and how positively targeted constructs were described (valence scores) for 28 work constructs. The resulting algorithms and scores are labeled the Text-Based Attitude and Perception Scoring (TAPS) dictionaries, which are made publicly available and were built using a mix of count-based scoring and transformer neural networks. The psychometric properties of the TAPS scores were then investigated. Results showed that theme scores differentiated responses based on their likelihood to discuss specific constructs. Additionally, valence scores exhibited strong evidence of reliability and validity, particularly, when analyzed on text responses that were more relevant to the construct of interest. This suggests that researchers and practitioners should explicitly design text prompts to elicit construct-related information if they wish to accurately assess work attitudes and perceptions via NLP. (PsycInfo Database Record (c) 2023 APA, all rights reserved).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
slycmd完成签到,获得积分10
13秒前
量子星尘发布了新的文献求助100
25秒前
cy0824完成签到 ,获得积分10
1分钟前
wodetaiyangLLL完成签到 ,获得积分10
1分钟前
Ljm发布了新的文献求助20
2分钟前
大模型应助科研通管家采纳,获得10
3分钟前
在水一方应助李哈哈采纳,获得10
3分钟前
Ljm发布了新的文献求助30
3分钟前
3分钟前
李哈哈发布了新的文献求助10
3分钟前
PAIDAXXXX完成签到,获得积分10
3分钟前
Ljm发布了新的文献求助30
3分钟前
大气的画板完成签到 ,获得积分10
4分钟前
QCB完成签到 ,获得积分10
4分钟前
4分钟前
风信子发布了新的文献求助10
4分钟前
灿烂而孤独的八戒完成签到 ,获得积分0
5分钟前
两个榴莲完成签到,获得积分0
5分钟前
好运常在完成签到 ,获得积分10
5分钟前
充电宝应助啊呆哦采纳,获得10
6分钟前
6分钟前
隐形曼青应助活泼学生采纳,获得10
6分钟前
啊呆哦完成签到,获得积分10
6分钟前
啊呆哦发布了新的文献求助10
6分钟前
星辰大海应助十分十分佳采纳,获得10
6分钟前
6分钟前
十分十分佳完成签到,获得积分20
7分钟前
7分钟前
GPTea举报李小雨求助涉嫌违规
7分钟前
7分钟前
活泼学生发布了新的文献求助10
7分钟前
neversay4ever完成签到 ,获得积分10
7分钟前
7分钟前
7分钟前
Skye完成签到 ,获得积分0
7分钟前
玛卡巴卡爱吃饭完成签到 ,获得积分10
7分钟前
花生四烯酸完成签到 ,获得积分10
8分钟前
GPTea举报qls123求助涉嫌违规
8分钟前
量子星尘发布了新的文献求助50
8分钟前
激动的似狮完成签到,获得积分10
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 500
translating meaning 500
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4900968
求助须知:如何正确求助?哪些是违规求助? 4180624
关于积分的说明 12977093
捐赠科研通 3945418
什么是DOI,文献DOI怎么找? 2164106
邀请新用户注册赠送积分活动 1182387
关于科研通互助平台的介绍 1088721