Turning words into numbers: Assessing work attitudes using natural language processing.

心理信息 心理学 感知 应用心理学 结构效度 构造(python库) 利克特量表 社会心理学 计算机科学 自然语言处理 心理测量学 梅德林 临床心理学 发展心理学 法学 程序设计语言 神经科学 政治学
作者
Andrew B. Speer,James Perrotta,Andrew P. Tenbrink,Lauren J. Wegmeyer,Angie Y. Delacruz,Jenna Bowker
出处
期刊:Journal of Applied Psychology [American Psychological Association]
卷期号:108 (6): 1027-1045 被引量:13
标识
DOI:10.1037/apl0001061
摘要

Researchers and practitioners are often interested in assessing employee attitudes and work perceptions. Although such perceptions are typically measured using Likert surveys or some other closed-end numerical rating format, many organizations also have access to large amounts of qualitative employee data. For example, open-ended comments from employee surveys allow workers to provide rich and contextualized perspectives about work. Unfortunately, there are practical challenges when trying to understand employee perceptions from qualitative data. Given this, the present study investigated whether natural language processing (NLP) algorithms could be developed to automatically score employee comments according to important work attitudes and perceptions. Using a large sample of employees, algorithms were developed to translate text into scores that reflect what comments were about (theme scores) and how positively targeted constructs were described (valence scores) for 28 work constructs. The resulting algorithms and scores are labeled the Text-Based Attitude and Perception Scoring (TAPS) dictionaries, which are made publicly available and were built using a mix of count-based scoring and transformer neural networks. The psychometric properties of the TAPS scores were then investigated. Results showed that theme scores differentiated responses based on their likelihood to discuss specific constructs. Additionally, valence scores exhibited strong evidence of reliability and validity, particularly, when analyzed on text responses that were more relevant to the construct of interest. This suggests that researchers and practitioners should explicitly design text prompts to elicit construct-related information if they wish to accurately assess work attitudes and perceptions via NLP. (PsycInfo Database Record (c) 2023 APA, all rights reserved).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
leung完成签到,获得积分10
1秒前
xu发布了新的文献求助10
2秒前
2秒前
2秒前
hmf1995完成签到 ,获得积分10
2秒前
站住浩子发布了新的文献求助10
2秒前
3秒前
3秒前
3秒前
4秒前
5秒前
在水一方应助段一帆采纳,获得10
5秒前
刘明兴发布了新的文献求助10
6秒前
6秒前
李梦凡完成签到,获得积分10
6秒前
6秒前
jjk发布了新的文献求助30
7秒前
mx应助自由语柳采纳,获得30
7秒前
7秒前
la完成签到 ,获得积分10
7秒前
BSDL发布了新的文献求助10
8秒前
butaishao发布了新的文献求助10
8秒前
Lydia发布了新的文献求助30
9秒前
坚强幼晴发布了新的文献求助10
9秒前
10秒前
仲夏发布了新的文献求助10
10秒前
站住浩子完成签到,获得积分10
11秒前
可爱的函函应助东郭水云采纳,获得10
11秒前
11秒前
teresa完成签到,获得积分10
11秒前
李芳完成签到,获得积分10
12秒前
酷波er应助开朗的早晨采纳,获得10
13秒前
所所应助科研通管家采纳,获得10
13秒前
百事可乐应助doin采纳,获得10
13秒前
搜集达人应助科研通管家采纳,获得10
13秒前
鲤鱼鸽子应助科研通管家采纳,获得10
13秒前
13秒前
怎么说应助科研通管家采纳,获得10
13秒前
在水一方应助科研通管家采纳,获得10
14秒前
小蘑菇应助科研通管家采纳,获得10
14秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961892
求助须知:如何正确求助?哪些是违规求助? 3508143
关于积分的说明 11139862
捐赠科研通 3240824
什么是DOI,文献DOI怎么找? 1791076
邀请新用户注册赠送积分活动 872725
科研通“疑难数据库(出版商)”最低求助积分说明 803344