A data-driven method for predicting thermal runaway propagation of battery modules considering uncertain conditions

计算机科学 电池(电) 热失控 热的 可靠性工程 材料科学 核工程 工程类 热力学 功率(物理) 物理
作者
Nan Ouyang,Wencan Zhang,Xiuxing Yin,Xingyao Li,Yi Xie,Hancheng He,Zhuoru Long
出处
期刊:Energy [Elsevier]
卷期号:273: 127168-127168 被引量:37
标识
DOI:10.1016/j.energy.2023.127168
摘要

Thermal Runaway Propagation (TRP) of lithium-ion battery packs has serious hazards. However, the TRP prediction is challenging because of the substantial uncertainty and hard-to-acquire data. To solve this problem, a fuzzy system and multi-task CNN-LSTM method are proposed to predict TRP multiple steps ahead. The TRP dataset is constructed by 25 sets of experiments and 130 sets of simulations. The uncertain SoC, charging and discharging conditions, and thermal runaway (TR) trigger points are considered in both experiments and simulations. Then, the fuzzy system is introduced to reason about the TR probability of the battery and optimized by a sparrow search algorithm (SSA). A multi-task CNN-LSTM model is proposed to extract fuzzy and physical information by employing a convolutional neural network (CNN) and multiple long short-term memory (LSTM) neural networks, respectively, and output the temperature of multiple cells simultaneously. Finally, the models are evaluated in the simulation and experimental validation sets with different window lengths and time resolutions. The results show that the fuzzy information significantly improves the prediction accuracy of the method, with a coefficient of determination (R2) of 98.48% for the 3s prediction horizon and 97.27% for the 18s prediction horizon in the experimental validation set.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
刚刚
1秒前
1秒前
1秒前
1秒前
Arlene完成签到 ,获得积分10
1秒前
Aryan关注了科研通微信公众号
1秒前
2秒前
2秒前
2秒前
hokin33完成签到,获得积分10
3秒前
小马甲应助菜菜mm采纳,获得10
3秒前
jyk发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
5秒前
杏杏发布了新的文献求助10
5秒前
笨笨忘幽关注了科研通微信公众号
5秒前
张一一完成签到,获得积分10
6秒前
惜肉龟发布了新的文献求助10
6秒前
6秒前
7秒前
aloopp发布了新的文献求助10
7秒前
7秒前
慕青应助鳗鱼铸海采纳,获得10
8秒前
乐乐应助英俊皮卡丘采纳,获得10
8秒前
思源应助聪慧的雪糕采纳,获得10
9秒前
Ava应助高天雨采纳,获得20
9秒前
yyang发布了新的文献求助10
9秒前
xn发布了新的文献求助10
10秒前
XinChenLee完成签到,获得积分10
10秒前
11秒前
NexusExplorer应助沉静的代桃采纳,获得10
12秒前
12秒前
852应助坦率铅笔采纳,获得10
12秒前
12秒前
归尘应助sunburst采纳,获得30
13秒前
哚圆圆完成签到,获得积分20
13秒前
mraze发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5785120
求助须知:如何正确求助?哪些是违规求助? 5686059
关于积分的说明 15466834
捐赠科研通 4914228
什么是DOI,文献DOI怎么找? 2645117
邀请新用户注册赠送积分活动 1592946
关于科研通互助平台的介绍 1547300