Prediction of dose deposition matrix using voxel features driven machine learning approach

体素 计算机科学 核医学 铅笔(光学) 人工智能 数学 物理 医学 光学
作者
Shengxiu Jiao,Xiaoqian Zhao,Shuzhan Yao
出处
期刊:British Journal of Radiology [British Institute of Radiology]
标识
DOI:10.1259/bjr.20220373
摘要

Objectives: A dose deposition matrix (DDM) prediction method using several voxel features and a machine learning (ML) approach is proposed for plan optimization in radiation therapy. Methods: Head and lung cases with the inhomogeneous medium are used as training and testing data. The prediction model is a cascade forward backprop neural network where the input is the features of the voxel, including 1) voxel to body surface distance along the beamlet axis, 2) voxel to beamlet axis distance, 3) voxel density, 4) heterogeneity corrected voxel to body surface distance, 5) heterogeneity corrected voxel to beamlet axis, and (6) the dose of voxel obtained from the pencil beam (PB) algorithm. The output is the predicted voxel dose corresponding to a beamlet. The predicted DDM was used for plan optimization (ML method) and compared with the dose of MC-based plan optimization (MC method) and the dose of pencil beam-based plan optimization (PB method). The mean absolute error (MAE) value was calculated for full volume relative to the dose of the MC method to evaluate the overall dose performance of the final plan. Results: For patient with head tumor, the ML method achieves MAE value 0.49 × 10 −4 and PB has MAE 1.86 × 10 −4 . For patient with lung tumor, the ML method has MAE 1.42 × 10 −4 and PB has MAE 3.72 × 10 −4 . The maximum percentage difference in PTV dose coverage (D 98 ) between ML and MC methods is no more than 1.2% for patient with head tumor, while the difference is larger than 10% using the PB method. For patient with lung tumor, the maximum percentage difference in PTV dose coverage (D 98 ) between ML and MC methods is no more than 2.1%, while the difference is larger than 16% using the PB method. Conclusions: In this work, a reliable DDM prediction method is established for plan optimization by applying several voxel features and the ML approach. The results show that the ML method based on voxel features can obtain plans comparable to the MC method and is better than the PB method in achieving accurate dose to the patient, which is helpful for rapid plan optimization and accurate dose calculation. Advances in knowledge: Establishment of a new machine learning method based on the relationship between the voxel and beamlet features for dose deposition matrix prediction in radiation therapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Tophet完成签到,获得积分10
刚刚
1秒前
1秒前
1秒前
FashionBoy应助落落采纳,获得10
2秒前
活力的青枫完成签到 ,获得积分10
2秒前
苏素肃发布了新的文献求助10
2秒前
3秒前
3秒前
4秒前
空禅yew发布了新的文献求助10
4秒前
汉堡包应助花开的声音1217采纳,获得10
4秒前
ying发布了新的文献求助10
4秒前
animenz完成签到,获得积分10
5秒前
tY发布了新的文献求助10
6秒前
OJL发布了新的文献求助10
6秒前
6秒前
6秒前
柒柒完成签到,获得积分10
6秒前
丘比特应助111采纳,获得10
7秒前
8秒前
8秒前
XShu完成签到,获得积分20
8秒前
xx完成签到 ,获得积分10
9秒前
羊知鱼完成签到,获得积分10
10秒前
公茂源发布了新的文献求助30
10秒前
搞怪不言发布了新的文献求助10
11秒前
DDDD完成签到,获得积分10
11秒前
陈莹发布了新的文献求助10
11秒前
执着的幻柏完成签到,获得积分10
11秒前
12秒前
12秒前
苏素肃完成签到,获得积分10
12秒前
隐形曼青应助sw98318采纳,获得10
13秒前
wangyanwxy发布了新的文献求助10
14秒前
14秒前
搜集达人应助WTF采纳,获得10
15秒前
Ava应助陆靖易采纳,获得10
15秒前
daishuheng完成签到 ,获得积分10
16秒前
OJL完成签到 ,获得积分10
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808