Prediction of dose deposition matrix using voxel features driven machine learning approach

体素 计算机科学 核医学 铅笔(光学) 人工智能 数学 物理 医学 光学
作者
Shengxiu Jiao,Xiaoqian Zhao,Shuzhan Yao
出处
期刊:British Journal of Radiology [British Institute of Radiology]
标识
DOI:10.1259/bjr.20220373
摘要

Objectives: A dose deposition matrix (DDM) prediction method using several voxel features and a machine learning (ML) approach is proposed for plan optimization in radiation therapy. Methods: Head and lung cases with the inhomogeneous medium are used as training and testing data. The prediction model is a cascade forward backprop neural network where the input is the features of the voxel, including 1) voxel to body surface distance along the beamlet axis, 2) voxel to beamlet axis distance, 3) voxel density, 4) heterogeneity corrected voxel to body surface distance, 5) heterogeneity corrected voxel to beamlet axis, and (6) the dose of voxel obtained from the pencil beam (PB) algorithm. The output is the predicted voxel dose corresponding to a beamlet. The predicted DDM was used for plan optimization (ML method) and compared with the dose of MC-based plan optimization (MC method) and the dose of pencil beam-based plan optimization (PB method). The mean absolute error (MAE) value was calculated for full volume relative to the dose of the MC method to evaluate the overall dose performance of the final plan. Results: For patient with head tumor, the ML method achieves MAE value 0.49 × 10 −4 and PB has MAE 1.86 × 10 −4 . For patient with lung tumor, the ML method has MAE 1.42 × 10 −4 and PB has MAE 3.72 × 10 −4 . The maximum percentage difference in PTV dose coverage (D 98 ) between ML and MC methods is no more than 1.2% for patient with head tumor, while the difference is larger than 10% using the PB method. For patient with lung tumor, the maximum percentage difference in PTV dose coverage (D 98 ) between ML and MC methods is no more than 2.1%, while the difference is larger than 16% using the PB method. Conclusions: In this work, a reliable DDM prediction method is established for plan optimization by applying several voxel features and the ML approach. The results show that the ML method based on voxel features can obtain plans comparable to the MC method and is better than the PB method in achieving accurate dose to the patient, which is helpful for rapid plan optimization and accurate dose calculation. Advances in knowledge: Establishment of a new machine learning method based on the relationship between the voxel and beamlet features for dose deposition matrix prediction in radiation therapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助Elaine采纳,获得10
刚刚
1秒前
2秒前
云之南发布了新的文献求助10
2秒前
清新的沛蓝完成签到,获得积分20
3秒前
eve完成签到,获得积分10
3秒前
4秒前
8秒前
9秒前
987654发布了新的文献求助10
9秒前
小小果妈发布了新的文献求助10
9秒前
个性白山完成签到,获得积分10
9秒前
10秒前
白昼の月完成签到 ,获得积分0
11秒前
背后广山发布了新的文献求助10
12秒前
13秒前
Jasper应助一心向雨采纳,获得10
13秒前
ononon发布了新的文献求助10
14秒前
16秒前
Nature发布了新的文献求助10
16秒前
16秒前
烂漫念文应助For采纳,获得10
16秒前
bkagyin应助JXY采纳,获得10
17秒前
李健的粉丝团团长应助DJ采纳,获得10
17秒前
18秒前
脑洞疼应助个性白山采纳,获得10
18秒前
larrry完成签到,获得积分20
19秒前
Draeck发布了新的文献求助10
21秒前
丘比特应助薛定谔的猫采纳,获得10
21秒前
kirirto发布了新的文献求助30
21秒前
圈儿完成签到,获得积分10
22秒前
在水一方应助Nature采纳,获得10
22秒前
小班完成签到,获得积分10
23秒前
23秒前
老板娘完成签到,获得积分10
24秒前
赘婿应助liuguohua126采纳,获得10
26秒前
26秒前
26秒前
26秒前
Draeck完成签到,获得积分10
29秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
The SAGE Handbook of Qualitative Research 800
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135113
求助须知:如何正确求助?哪些是违规求助? 2786095
关于积分的说明 7775189
捐赠科研通 2441915
什么是DOI,文献DOI怎么找? 1298256
科研通“疑难数据库(出版商)”最低求助积分说明 625108
版权声明 600839