Prediction of dose deposition matrix using voxel features driven machine learning approach

体素 计算机科学 核医学 铅笔(光学) 人工智能 数学 物理 医学 光学
作者
Shengxiu Jiao,Xiaoqian Zhao,Shuzhan Yao
出处
期刊:British Journal of Radiology [Wiley]
标识
DOI:10.1259/bjr.20220373
摘要

Objectives: A dose deposition matrix (DDM) prediction method using several voxel features and a machine learning (ML) approach is proposed for plan optimization in radiation therapy. Methods: Head and lung cases with the inhomogeneous medium are used as training and testing data. The prediction model is a cascade forward backprop neural network where the input is the features of the voxel, including 1) voxel to body surface distance along the beamlet axis, 2) voxel to beamlet axis distance, 3) voxel density, 4) heterogeneity corrected voxel to body surface distance, 5) heterogeneity corrected voxel to beamlet axis, and (6) the dose of voxel obtained from the pencil beam (PB) algorithm. The output is the predicted voxel dose corresponding to a beamlet. The predicted DDM was used for plan optimization (ML method) and compared with the dose of MC-based plan optimization (MC method) and the dose of pencil beam-based plan optimization (PB method). The mean absolute error (MAE) value was calculated for full volume relative to the dose of the MC method to evaluate the overall dose performance of the final plan. Results: For patient with head tumor, the ML method achieves MAE value 0.49 × 10 −4 and PB has MAE 1.86 × 10 −4 . For patient with lung tumor, the ML method has MAE 1.42 × 10 −4 and PB has MAE 3.72 × 10 −4 . The maximum percentage difference in PTV dose coverage (D 98 ) between ML and MC methods is no more than 1.2% for patient with head tumor, while the difference is larger than 10% using the PB method. For patient with lung tumor, the maximum percentage difference in PTV dose coverage (D 98 ) between ML and MC methods is no more than 2.1%, while the difference is larger than 16% using the PB method. Conclusions: In this work, a reliable DDM prediction method is established for plan optimization by applying several voxel features and the ML approach. The results show that the ML method based on voxel features can obtain plans comparable to the MC method and is better than the PB method in achieving accurate dose to the patient, which is helpful for rapid plan optimization and accurate dose calculation. Advances in knowledge: Establishment of a new machine learning method based on the relationship between the voxel and beamlet features for dose deposition matrix prediction in radiation therapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
江月渡发布了新的文献求助10
刚刚
xy发布了新的文献求助10
4秒前
范小楠完成签到,获得积分10
5秒前
温婉的书蕾完成签到 ,获得积分10
6秒前
乐乐应助机智念芹采纳,获得10
8秒前
JamesPei应助张凯采纳,获得10
8秒前
孙燕应助李y梅子采纳,获得50
9秒前
细心书蕾完成签到 ,获得积分10
10秒前
范医生01完成签到,获得积分10
10秒前
12秒前
12秒前
Theprisoners应助yu采纳,获得20
15秒前
JamesPei应助天边采纳,获得10
16秒前
深情安青应助xy采纳,获得10
17秒前
18秒前
19秒前
20秒前
英俊的铭应助无私秋珊采纳,获得10
21秒前
Ace发布了新的文献求助10
21秒前
yang完成签到,获得积分10
22秒前
张凯发布了新的文献求助10
22秒前
24秒前
apoptoxin4896发布了新的文献求助10
24秒前
斯文败类应助zhourongchun采纳,获得10
25秒前
26秒前
zhaoyuqing完成签到 ,获得积分10
27秒前
Csene发布了新的文献求助10
28秒前
打打应助科研通管家采纳,获得10
28秒前
Profeto应助科研通管家采纳,获得10
29秒前
上官若男应助科研通管家采纳,获得10
29秒前
ED应助科研通管家采纳,获得10
29秒前
慕青应助科研通管家采纳,获得30
29秒前
dongjy应助科研通管家采纳,获得40
29秒前
大模型应助科研通管家采纳,获得10
29秒前
香蕉觅云应助科研通管家采纳,获得10
29秒前
深情安青应助科研通管家采纳,获得10
29秒前
爆米花应助科研通管家采纳,获得10
29秒前
29秒前
29秒前
NexusExplorer应助香山叶正红采纳,获得10
31秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993971
求助须知:如何正确求助?哪些是违规求助? 3534571
关于积分的说明 11265961
捐赠科研通 3274483
什么是DOI,文献DOI怎么找? 1806363
邀请新用户注册赠送积分活动 883224
科研通“疑难数据库(出版商)”最低求助积分说明 809712