亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Prediction of dose deposition matrix using voxel features driven machine learning approach

体素 计算机科学 核医学 铅笔(光学) 人工智能 数学 物理 医学 光学
作者
Shengxiu Jiao,Xiaoqian Zhao,Shuzhan Yao
出处
期刊:British Journal of Radiology [British Institute of Radiology]
标识
DOI:10.1259/bjr.20220373
摘要

Objectives: A dose deposition matrix (DDM) prediction method using several voxel features and a machine learning (ML) approach is proposed for plan optimization in radiation therapy. Methods: Head and lung cases with the inhomogeneous medium are used as training and testing data. The prediction model is a cascade forward backprop neural network where the input is the features of the voxel, including 1) voxel to body surface distance along the beamlet axis, 2) voxel to beamlet axis distance, 3) voxel density, 4) heterogeneity corrected voxel to body surface distance, 5) heterogeneity corrected voxel to beamlet axis, and (6) the dose of voxel obtained from the pencil beam (PB) algorithm. The output is the predicted voxel dose corresponding to a beamlet. The predicted DDM was used for plan optimization (ML method) and compared with the dose of MC-based plan optimization (MC method) and the dose of pencil beam-based plan optimization (PB method). The mean absolute error (MAE) value was calculated for full volume relative to the dose of the MC method to evaluate the overall dose performance of the final plan. Results: For patient with head tumor, the ML method achieves MAE value 0.49 × 10 −4 and PB has MAE 1.86 × 10 −4 . For patient with lung tumor, the ML method has MAE 1.42 × 10 −4 and PB has MAE 3.72 × 10 −4 . The maximum percentage difference in PTV dose coverage (D 98 ) between ML and MC methods is no more than 1.2% for patient with head tumor, while the difference is larger than 10% using the PB method. For patient with lung tumor, the maximum percentage difference in PTV dose coverage (D 98 ) between ML and MC methods is no more than 2.1%, while the difference is larger than 16% using the PB method. Conclusions: In this work, a reliable DDM prediction method is established for plan optimization by applying several voxel features and the ML approach. The results show that the ML method based on voxel features can obtain plans comparable to the MC method and is better than the PB method in achieving accurate dose to the patient, which is helpful for rapid plan optimization and accurate dose calculation. Advances in knowledge: Establishment of a new machine learning method based on the relationship between the voxel and beamlet features for dose deposition matrix prediction in radiation therapy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
8秒前
量子星尘发布了新的文献求助10
23秒前
29秒前
58秒前
1分钟前
森林发布了新的文献求助10
1分钟前
zhangxiaoqing发布了新的文献求助10
1分钟前
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
知性的剑身完成签到,获得积分10
2分钟前
DocChen发布了新的文献求助10
2分钟前
xiaoqingnian完成签到,获得积分10
2分钟前
小粒橙完成签到 ,获得积分10
3分钟前
猫抓板完成签到,获得积分10
3分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
4分钟前
量子星尘发布了新的文献求助10
5分钟前
万能图书馆应助猫抓板采纳,获得10
5分钟前
5分钟前
猫抓板发布了新的文献求助10
5分钟前
路人应助Magali采纳,获得200
5分钟前
小蘑菇应助猫抓板采纳,获得10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
大园完成签到 ,获得积分10
5分钟前
5分钟前
领导范儿应助Magali采纳,获得150
6分钟前
猫抓板发布了新的文献求助10
6分钟前
昭昭完成签到,获得积分10
6分钟前
6分钟前
Magali发布了新的文献求助150
6分钟前
6分钟前
昭昭发布了新的文献求助10
6分钟前
6分钟前
6分钟前
爆米花应助昭昭采纳,获得10
6分钟前
猫抓板发布了新的文献求助10
6分钟前
共享精神应助猫抓板采纳,获得10
6分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
Exosomes Pipeline Insight, 2025 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5671257
求助须知:如何正确求助?哪些是违规求助? 4912973
关于积分的说明 15134310
捐赠科研通 4830056
什么是DOI,文献DOI怎么找? 2586666
邀请新用户注册赠送积分活动 1540282
关于科研通互助平台的介绍 1498486