Designing antimicrobial peptides using deep learning and molecular dynamic simulations

抗菌肽 嗜麦芽窄食单胞菌 深度学习 计算生物学 计算机科学 结构母题 人工智能 生物 细菌 生物化学 铜绿假单胞菌 遗传学
作者
Qiushi Cao,Cheng Ge,Xuejie Wang,Peta J. Harvey,Zixuan Zhang,Yuan Ma,Xianghong Wang,Xinying Jia,Mehdi Mobli,David J. Craik,Tao Jiang,Jinbo Yang,Zhiqiang Wei,Yan Wang,Shan Chang,Rilei Yu
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (2) 被引量:58
标识
DOI:10.1093/bib/bbad058
摘要

Abstract With the emergence of multidrug-resistant bacteria, antimicrobial peptides (AMPs) offer promising options for replacing traditional antibiotics to treat bacterial infections, but discovering and designing AMPs using traditional methods is a time-consuming and costly process. Deep learning has been applied to the de novo design of AMPs and address AMP classification with high efficiency. In this study, several natural language processing models were combined to design and identify AMPs, i.e. sequence generative adversarial nets, bidirectional encoder representations from transformers and multilayer perceptron. Then, six candidate AMPs were screened by AlphaFold2 structure prediction and molecular dynamic simulations. These peptides show low homology with known AMPs and belong to a novel class of AMPs. After initial bioactivity testing, one of the peptides, A-222, showed inhibition against gram-positive and gram-negative bacteria. The structural analysis of this novel peptide A-222 obtained by nuclear magnetic resonance confirmed the presence of an alpha-helix, which was consistent with the results predicted by AlphaFold2. We then performed a structure–activity relationship study to design a new series of peptide analogs and found that the activities of these analogs could be increased by 4–8-fold against Stenotrophomonas maltophilia WH 006 and Pseudomonas aeruginosa PAO1. Overall, deep learning shows great potential in accelerating the discovery of novel AMPs and holds promise as an important tool for developing novel AMPs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
星辰大海应助ccmaxp采纳,获得10
1秒前
DENANANA完成签到,获得积分10
3秒前
徐震完成签到,获得积分10
3秒前
谨言发布了新的文献求助10
3秒前
3秒前
LLQ完成签到,获得积分10
3秒前
淡淡的沅发布了新的文献求助10
5秒前
爆米花应助小手凉凉采纳,获得10
6秒前
逸之狐发布了新的文献求助10
6秒前
雏菊发布了新的文献求助10
7秒前
8秒前
10秒前
爆米花应助科研通管家采纳,获得100
10秒前
汉堡包应助科研通管家采纳,获得10
10秒前
传奇3应助科研通管家采纳,获得20
10秒前
烟花应助科研通管家采纳,获得10
10秒前
10秒前
共享精神应助科研通管家采纳,获得10
10秒前
11秒前
留胡子的紫槐完成签到,获得积分10
11秒前
11秒前
桐桐应助王子采纳,获得10
12秒前
淡淡的沅完成签到,获得积分10
12秒前
12秒前
英姑应助liars采纳,获得10
14秒前
14秒前
ccmaxp发布了新的文献求助10
15秒前
15秒前
Silence发布了新的文献求助10
15秒前
领导范儿应助予安采纳,获得10
16秒前
shann完成签到,获得积分10
17秒前
19秒前
19秒前
21秒前
Mingtiaoxiyue发布了新的文献求助30
21秒前
Npccc完成签到,获得积分10
21秒前
21秒前
开朗洋葱发布了新的文献求助10
21秒前
孙成成发布了新的文献求助10
24秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3975610
求助须知:如何正确求助?哪些是违规求助? 3519986
关于积分的说明 11200337
捐赠科研通 3256337
什么是DOI,文献DOI怎么找? 1798246
邀请新用户注册赠送积分活动 877446
科研通“疑难数据库(出版商)”最低求助积分说明 806357