Designing antimicrobial peptides using deep learning and molecular dynamic simulations

抗菌肽 嗜麦芽窄食单胞菌 深度学习 计算生物学 计算机科学 结构母题 人工智能 生物 细菌 生物化学 铜绿假单胞菌 遗传学
作者
Qiushi Cao,Cheng Ge,Xuejie Wang,Peta J. Harvey,Zixuan Zhang,Yuan Ma,Xianghong Wang,Xinying Jia,Mehdi Mobli,David J. Craik,Tao Jiang,Jing Wang,Zhiqiang Wei,Yan Wang,Shan Chang,Rilei Yu
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (2) 被引量:23
标识
DOI:10.1093/bib/bbad058
摘要

Abstract With the emergence of multidrug-resistant bacteria, antimicrobial peptides (AMPs) offer promising options for replacing traditional antibiotics to treat bacterial infections, but discovering and designing AMPs using traditional methods is a time-consuming and costly process. Deep learning has been applied to the de novo design of AMPs and address AMP classification with high efficiency. In this study, several natural language processing models were combined to design and identify AMPs, i.e. sequence generative adversarial nets, bidirectional encoder representations from transformers and multilayer perceptron. Then, six candidate AMPs were screened by AlphaFold2 structure prediction and molecular dynamic simulations. These peptides show low homology with known AMPs and belong to a novel class of AMPs. After initial bioactivity testing, one of the peptides, A-222, showed inhibition against gram-positive and gram-negative bacteria. The structural analysis of this novel peptide A-222 obtained by nuclear magnetic resonance confirmed the presence of an alpha-helix, which was consistent with the results predicted by AlphaFold2. We then performed a structure–activity relationship study to design a new series of peptide analogs and found that the activities of these analogs could be increased by 4–8-fold against Stenotrophomonas maltophilia WH 006 and Pseudomonas aeruginosa PAO1. Overall, deep learning shows great potential in accelerating the discovery of novel AMPs and holds promise as an important tool for developing novel AMPs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
111完成签到 ,获得积分10
1秒前
shen5920驳回了Akim应助
1秒前
所所应助古月采纳,获得10
2秒前
2秒前
小七发布了新的文献求助10
3秒前
lierking应助GUGU采纳,获得10
3秒前
小杨完成签到,获得积分20
4秒前
小孙发布了新的文献求助30
4秒前
5秒前
说好不吃肥肉的完成签到,获得积分10
5秒前
小怪兽大王完成签到,获得积分10
7秒前
小杨发布了新的文献求助10
8秒前
哈123发布了新的文献求助10
11秒前
一一应助super chan采纳,获得10
12秒前
14秒前
zonker完成签到,获得积分10
15秒前
九尾狐发布了新的文献求助30
17秒前
wen发布了新的文献求助10
18秒前
田様应助千阳采纳,获得10
18秒前
求文献完成签到,获得积分10
19秒前
20秒前
Ava应助小孙采纳,获得10
23秒前
23秒前
25秒前
波恰发布了新的文献求助10
25秒前
奔跑完成签到,获得积分10
26秒前
26秒前
科目三应助无尘采纳,获得10
26秒前
27秒前
松花酿酒发布了新的文献求助200
28秒前
28秒前
子车雁开发布了新的文献求助10
29秒前
Ava应助xiongdi521采纳,获得10
30秒前
32秒前
33完成签到 ,获得积分10
32秒前
肖肖肖发布了新的文献求助10
32秒前
33秒前
33秒前
34秒前
千阳发布了新的文献求助10
35秒前
高分求助中
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
Relativism, Conceptual Schemes, and Categorical Frameworks 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3462718
求助须知:如何正确求助?哪些是违规求助? 3056227
关于积分的说明 9051055
捐赠科研通 2745844
什么是DOI,文献DOI怎么找? 1506627
科研通“疑难数据库(出版商)”最低求助积分说明 696181
邀请新用户注册赠送积分活动 695700