Privacy-preserving federated learning: Application to behind-the-meter solar photovoltaic generation forecasting

光伏系统 计算机科学 可再生能源 灵活性(工程) 多层感知器 差别隐私 分布式发电 人工智能 信息隐私 机器学习 数据挖掘 人工神经网络 分布式计算 工程类 计算机安全 电气工程 统计 数学
作者
Paniz Hosseini,Saman Taheri,Javid Akhavan,Ali Razban
出处
期刊:Energy Conversion and Management [Elsevier BV]
卷期号:283: 116900-116900 被引量:7
标识
DOI:10.1016/j.enconman.2023.116900
摘要

The growing usage of decentralized renewable energy sources has made accurate estimation of their aggregated generation crucial for maintaining grid flexibility and reliability. However, the majority of distributed photovoltaic (PV) systems are behind-the-meter (BTM) and invisible to utilities, leading to three challenges in obtaining an accurate forecast of their aggregated output. Firstly, traditional centralized prediction algorithms used in previous studies may not be appropriate due to privacy concerns. There is therefore a need for decentralized forecasting methods, such as federated learning (FL), to protect privacy. Secondly, there has been no comparison between localized, centralized, and decentralized forecasting methods for BTM PV production, and the trade-off between prediction accuracy and privacy has not been explored. Lastly, the computational time of data-driven prediction algorithms has not been examined. This article presents a FL power forecasting method for PVs, which uses federated learning as a decentralized collaborative modeling approach to train a single model on data from multiple BTM sites. The machine learning network used to design this FL-based BTM PV forecasting model is a multi-layered perceptron, which ensures privacy and security of the data. Comparing the suggested FL forecasting model to non-private centralized and entirely private localized models revealed that it has a high level of accuracy, with an RMSE that is 18.17% lower than localized models and 9.9% higher than centralized models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
蒋婷发布了新的文献求助10
刚刚
拾年发布了新的文献求助10
1秒前
sun发布了新的文献求助10
2秒前
last炫神丶完成签到,获得积分10
2秒前
KinoFreeze完成签到 ,获得积分10
3秒前
huanghuahua发布了新的文献求助10
3秒前
4秒前
卿欣完成签到 ,获得积分10
5秒前
last炫神丶发布了新的文献求助10
5秒前
风枞完成签到 ,获得积分10
6秒前
白之玉发布了新的文献求助10
7秒前
小酒迟疑完成签到,获得积分10
9秒前
蒋婷完成签到,获得积分10
9秒前
9秒前
桐桐应助文静的猕猴桃采纳,获得10
10秒前
小马甲应助熊小子爱学习采纳,获得10
10秒前
12秒前
英姑应助shain采纳,获得10
13秒前
huanghuahua完成签到,获得积分10
15秒前
Jasper应助沉静初南采纳,获得10
16秒前
Jasper应助sun采纳,获得10
17秒前
18秒前
Tyranny完成签到 ,获得积分10
18秒前
Chocolate发布了新的文献求助10
18秒前
复杂的平卉完成签到,获得积分10
18秒前
19秒前
water应助老九采纳,获得30
19秒前
海绵宝宝完成签到 ,获得积分10
20秒前
熊小子爱学习完成签到,获得积分10
21秒前
Yx完成签到,获得积分10
21秒前
zm发布了新的文献求助10
22秒前
归尘应助小敏哼采纳,获得10
23秒前
LIBALA完成签到,获得积分10
23秒前
23秒前
23秒前
24秒前
25秒前
26秒前
28秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993605
求助须知:如何正确求助?哪些是违规求助? 3534372
关于积分的说明 11265282
捐赠科研通 3274119
什么是DOI,文献DOI怎么找? 1806307
邀请新用户注册赠送积分活动 883118
科研通“疑难数据库(出版商)”最低求助积分说明 809712