A signal-filtering and feature-enhancement method based on ensemble local mean decomposition and adaptive morphological filtering

粒子群优化 计算机科学 模式识别(心理学) 峰度 控制理论(社会学) 特征(语言学) 特征提取 算法 人工智能 数学 统计 语言学 哲学 控制(管理)
作者
Hao Zhou,Jianzhong Yang,Gaofeng Guo,Hua Xiang,Jihong Chen
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:34 (7): 075105-075105 被引量:2
标识
DOI:10.1088/1361-6501/acbe5b
摘要

Abstract The bearing fault signals from the spindle motors of computer numerical control machines are complex and non-linear due to being coupled to multiple subsystems. The complexity of industrial signals, with increased industrial noise, and the difference in fault features in different life cycles and different individual signals bring great challenges for fault feature extraction. In this paper, a signal-filtering and feature-enhancement method based on an ensemble local mean decomposition and adaptive morphological filtering (ELMD-AMF) method is proposed. First, the original vibration signal of the bearing is reconstructed by ELMD to reducing interference from background noise. Next, an improved feature-enhancement process based on AMF is constructed, a particle swarm optimization with maximum-weighted spectral kurtosis as an optimization objective is used to adaptively construct the size of the structural element, and a morphology hat product operator one is adapted to extract the periodic impulse features. Finally, the effectiveness of the method is proved by using an actual three-phase induction motor matched with an NTN ceramic bearing and a FAG metal bearing, respectively. Further, compared with minimum entropy deconvolution and fast kurtogram methods, the result proves that the proposed method has better performance for both early-failure and late-failure scenarios under real-world engineering conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助波波玛奇朵采纳,获得10
2秒前
戏言121完成签到,获得积分10
2秒前
迷人的映雁完成签到,获得积分10
3秒前
3秒前
美丽的之双完成签到,获得积分10
4秒前
阿会完成签到,获得积分10
4秒前
wqm完成签到,获得积分10
5秒前
戏言121发布了新的文献求助10
6秒前
6秒前
7秒前
优雅的流沙完成签到 ,获得积分10
8秒前
猫的海完成签到,获得积分10
8秒前
8秒前
Eason Liu完成签到,获得积分0
9秒前
Wendy1204完成签到,获得积分20
9秒前
Hello应助654采纳,获得10
9秒前
咩咩羊完成签到,获得积分10
9秒前
13秒前
lianqing完成签到,获得积分10
13秒前
汉堡包应助科研通管家采纳,获得10
13秒前
领导范儿应助科研通管家采纳,获得10
14秒前
RC_Wang应助科研通管家采纳,获得10
14秒前
科研通AI5应助科研通管家采纳,获得10
14秒前
所所应助科研通管家采纳,获得10
14秒前
FashionBoy应助科研通管家采纳,获得10
14秒前
赘婿应助科研通管家采纳,获得10
14秒前
hh应助科研通管家采纳,获得10
14秒前
所所应助科研通管家采纳,获得10
14秒前
丘比特应助科研通管家采纳,获得10
14秒前
搜集达人应助科研通管家采纳,获得30
14秒前
14秒前
Leif应助科研通管家采纳,获得20
14秒前
14秒前
15秒前
15秒前
16秒前
16秒前
忘羡222发布了新的文献求助20
17秒前
丰富猕猴桃完成签到,获得积分10
18秒前
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824