Residual shrinkage transformer relation network for intelligent fault detection of industrial robot with zero-fault samples

计算机科学 故障检测与隔离 残余物 变压器 收缩率 数据挖掘 模式识别(心理学) 机器人 人工智能 可靠性工程 机器学习 算法 电压 执行机构 电气工程 工程类
作者
Zuoyi Chen,Ke Wu,Jun Wu,Chao Deng,Yuanhang Wang
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:268: 110452-110452 被引量:8
标识
DOI:10.1016/j.knosys.2023.110452
摘要

Fault detection might effectively enhance the operational reliability and safety of industrial robot (IR). Data-driven intelligent detection methods are dependent on a certain number of fault samples. However, the fault samples of the IR are difficult to be obtained and even unavailable. To overcome the mentioned shortcomings, a newly residual shrinkage transformer relation network (RSTRN) is proposed in the paper for fault detection of the IR. In this method, a residual shrinkage network is applied to eliminate interference features hidden in the input signals and extract representative features. And, the feature sample pair is created to describe relationship between the health state and other states. Then, the transformer relation network is constructed to evaluate the similarity relations between the sample pair to determine their types. In addition, an auxiliary sample library is built to help the RSTRN in extracting more firm health features. Finally, the effectiveness of the RSTRN method is verified by using self-built IR experiments. The experimental results show that detection accuracy and recall of the RSTRN method is at least 25% higher than that of existing methods, and its noise immunity is also improved.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田様应助蔡继海采纳,获得10
1秒前
玖玖完成签到,获得积分10
1秒前
搜集达人应助成就孤萍采纳,获得10
1秒前
小王完成签到,获得积分20
2秒前
小杭76发布了新的文献求助10
3秒前
4秒前
同尘发布了新的文献求助10
4秒前
dreamdraver完成签到,获得积分10
5秒前
5秒前
5秒前
6秒前
冷静的面包完成签到,获得积分20
7秒前
科研通AI6应助zz采纳,获得10
7秒前
7秒前
7秒前
Song发布了新的文献求助10
8秒前
找文献呢发布了新的文献求助10
8秒前
嘿嘿发布了新的文献求助10
9秒前
廷烨完成签到,获得积分10
9秒前
9秒前
HMM完成签到,获得积分10
10秒前
10秒前
10秒前
Wangyan完成签到 ,获得积分10
10秒前
bgistone完成签到,获得积分10
10秒前
zz完成签到,获得积分10
11秒前
蔡继海发布了新的文献求助10
12秒前
我爱看文献完成签到,获得积分10
12秒前
哈哈哈哈发布了新的文献求助10
12秒前
angel发布了新的文献求助10
14秒前
14秒前
15秒前
16秒前
美好斓发布了新的文献求助10
16秒前
唐daytoy1005完成签到,获得积分10
16秒前
汉堡包应助阿慧采纳,获得10
17秒前
18秒前
柠檬不萌完成签到,获得积分20
19秒前
19秒前
123完成签到,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
COATING AND DRYINGDEEECTSTroubleshooting Operating Problems 600
涂布技术与设备手册 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5569810
求助须知:如何正确求助?哪些是违规求助? 4655144
关于积分的说明 14710842
捐赠科研通 4596139
什么是DOI,文献DOI怎么找? 2522284
邀请新用户注册赠送积分活动 1493421
关于科研通互助平台的介绍 1464032