Information Propagation Prediction Based on Spatial–Temporal Attention and Heterogeneous Graph Convolutional Networks

计算机科学 代表(政治) 图形 编码 机制(生物学) 光学(聚焦) 卷积神经网络 人工智能 机器学习 数据挖掘 理论计算机科学 政治学 生物化学 法学 化学 哲学 物理 光学 认识论 基因 政治
作者
Xiaoyang Liu,Chenxiang Miao,Giacomo Fiumara,Pasquale De Meo
出处
期刊:IEEE Transactions on Computational Social Systems [Institute of Electrical and Electronics Engineers]
卷期号:11 (1): 945-958 被引量:24
标识
DOI:10.1109/tcss.2023.3244573
摘要

With the development of deep learning and other technologies, the research of information propagation prediction has also achieved important research achievements. However, the existing information diffusion studies either focus on the attention relationships of users or they predict the information according to the diffusion relationships of users, which makes the prediction results have certain limitations. Therefore, a prediction model has been proposed spatial–temporal attention heterogeneous graph convolutional networks (STAHGCNs). First, we use GCN to learn user influence relationships and user behavior relationships, and we propose a user representation fusion mechanism to learn the user characteristics. Second, to account for the dynamics of user behavior, a temporal attention mechanism strategy is used to encode time into the heterogeneous graph to obtain a more expressive user representation. Finally, the obtained user representation is input into the multihead attention mechanism for information propagation prediction. Experimental results performed on the Twitter, Douban, Digg, and Memetracker datasets have shown that the proposed STAHGCN model increased by 8.80% and 6.74% at hits@N and map@N, respectively, which are significantly better than the original latest DyHGCN model. The proposed STAHGCN model effectively integrates spatial factors, such as time factor, user influence, and behavior, which greatly improves the accuracy of information propagation prediction and has great significance for rumor monitoring and malicious account detection.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哦哦哦完成签到,获得积分10
1秒前
1秒前
2秒前
zzz362完成签到,获得积分10
3秒前
JamesPei应助艾斯采纳,获得10
3秒前
w_donghui完成签到,获得积分10
5秒前
6秒前
贺六浑发布了新的文献求助30
6秒前
7秒前
独特乘风完成签到,获得积分10
9秒前
东方欲晓完成签到,获得积分10
10秒前
11秒前
11秒前
11秒前
Donistry完成签到,获得积分10
11秒前
老实紫萱完成签到,获得积分20
12秒前
浮游应助於依白采纳,获得10
13秒前
森一发布了新的文献求助10
13秒前
艾斯发布了新的文献求助10
15秒前
故意的曼香完成签到,获得积分10
17秒前
A水暖五金批发张哥完成签到,获得积分10
18秒前
雨天完成签到,获得积分10
18秒前
18秒前
糕冷草莓完成签到,获得积分10
20秒前
艾斯完成签到,获得积分10
21秒前
21秒前
22秒前
22秒前
24秒前
亮秦发布了新的文献求助10
24秒前
Kk完成签到,获得积分10
24秒前
丽丽发布了新的文献求助10
25秒前
撖堡包完成签到 ,获得积分10
26秒前
Jian发布了新的文献求助10
27秒前
27秒前
hooo发布了新的文献求助10
27秒前
佳丽发布了新的文献求助10
28秒前
木冉完成签到 ,获得积分10
28秒前
28秒前
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5566831
求助须知:如何正确求助?哪些是违规求助? 4651516
关于积分的说明 14696737
捐赠科研通 4593574
什么是DOI,文献DOI怎么找? 2520215
邀请新用户注册赠送积分活动 1492474
关于科研通互助平台的介绍 1463528