Information Propagation Prediction Based on Spatial–Temporal Attention and Heterogeneous Graph Convolutional Networks

计算机科学 代表(政治) 图形 编码 机制(生物学) 光学(聚焦) 卷积神经网络 人工智能 机器学习 数据挖掘 理论计算机科学 政治学 生物化学 法学 化学 哲学 物理 光学 认识论 基因 政治
作者
Xiaoyang Liu,Chenxiang Miao,Giacomo Fiumara,Pasquale De Meo
出处
期刊:IEEE Transactions on Computational Social Systems [Institute of Electrical and Electronics Engineers]
卷期号:11 (1): 945-958 被引量:24
标识
DOI:10.1109/tcss.2023.3244573
摘要

With the development of deep learning and other technologies, the research of information propagation prediction has also achieved important research achievements. However, the existing information diffusion studies either focus on the attention relationships of users or they predict the information according to the diffusion relationships of users, which makes the prediction results have certain limitations. Therefore, a prediction model has been proposed spatial–temporal attention heterogeneous graph convolutional networks (STAHGCNs). First, we use GCN to learn user influence relationships and user behavior relationships, and we propose a user representation fusion mechanism to learn the user characteristics. Second, to account for the dynamics of user behavior, a temporal attention mechanism strategy is used to encode time into the heterogeneous graph to obtain a more expressive user representation. Finally, the obtained user representation is input into the multihead attention mechanism for information propagation prediction. Experimental results performed on the Twitter, Douban, Digg, and Memetracker datasets have shown that the proposed STAHGCN model increased by 8.80% and 6.74% at hits@N and map@N, respectively, which are significantly better than the original latest DyHGCN model. The proposed STAHGCN model effectively integrates spatial factors, such as time factor, user influence, and behavior, which greatly improves the accuracy of information propagation prediction and has great significance for rumor monitoring and malicious account detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
婷婷发布了新的文献求助10
刚刚
123发布了新的文献求助10
1秒前
1秒前
1秒前
科研通AI5应助豆豆豆采纳,获得10
1秒前
共享精神应助老实皮卡丘采纳,获得10
2秒前
2秒前
0406完成签到,获得积分10
2秒前
英姑应助Hua_Xiao采纳,获得10
2秒前
地三鲜完成签到,获得积分10
3秒前
学术小牛完成签到,获得积分20
3秒前
mynuongga发布了新的文献求助10
3秒前
刘定宏完成签到 ,获得积分10
3秒前
3秒前
3秒前
五月莲花发布了新的文献求助10
4秒前
Zsx完成签到,获得积分10
4秒前
ljz910005完成签到,获得积分10
4秒前
4秒前
量子星尘发布了新的文献求助150
4秒前
海绵宝宝发布了新的文献求助10
4秒前
陈英杰完成签到,获得积分10
4秒前
5秒前
呼呼完成签到,获得积分20
5秒前
刘金磊完成签到,获得积分10
5秒前
霹雳蜗牛完成签到,获得积分10
5秒前
6秒前
6秒前
6秒前
义气的幻翠完成签到,获得积分10
6秒前
一圆完成签到,获得积分20
6秒前
7秒前
肖谋发布了新的文献求助10
7秒前
无花果应助彩色亿先采纳,获得10
7秒前
ang关闭了ang文献求助
7秒前
yyy发布了新的文献求助10
7秒前
8秒前
勤奋水之完成签到,获得积分10
8秒前
8秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Hydrothermal Circulation and Seawater Chemistry: Links and Feedbacks 1200
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Oxford Learner's Pocket Word Skills 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5151777
求助须知:如何正确求助?哪些是违规求助? 4347390
关于积分的说明 13536600
捐赠科研通 4190152
什么是DOI,文献DOI怎么找? 2297880
邀请新用户注册赠送积分活动 1298211
关于科研通互助平台的介绍 1243007