Information Propagation Prediction Based on Spatial–Temporal Attention and Heterogeneous Graph Convolutional Networks

计算机科学 代表(政治) 图形 编码 机制(生物学) 光学(聚焦) 卷积神经网络 人工智能 机器学习 数据挖掘 理论计算机科学 生物化学 化学 哲学 物理 光学 认识论 政治 政治学 法学 基因
作者
Xiaoyang Liu,Chenxiang Miao,Giacomo Fiumara,Pasquale De Meo
出处
期刊:IEEE Transactions on Computational Social Systems [Institute of Electrical and Electronics Engineers]
卷期号:11 (1): 945-958 被引量:24
标识
DOI:10.1109/tcss.2023.3244573
摘要

With the development of deep learning and other technologies, the research of information propagation prediction has also achieved important research achievements. However, the existing information diffusion studies either focus on the attention relationships of users or they predict the information according to the diffusion relationships of users, which makes the prediction results have certain limitations. Therefore, a prediction model has been proposed spatial–temporal attention heterogeneous graph convolutional networks (STAHGCNs). First, we use GCN to learn user influence relationships and user behavior relationships, and we propose a user representation fusion mechanism to learn the user characteristics. Second, to account for the dynamics of user behavior, a temporal attention mechanism strategy is used to encode time into the heterogeneous graph to obtain a more expressive user representation. Finally, the obtained user representation is input into the multihead attention mechanism for information propagation prediction. Experimental results performed on the Twitter, Douban, Digg, and Memetracker datasets have shown that the proposed STAHGCN model increased by 8.80% and 6.74% at hits@N and map@N, respectively, which are significantly better than the original latest DyHGCN model. The proposed STAHGCN model effectively integrates spatial factors, such as time factor, user influence, and behavior, which greatly improves the accuracy of information propagation prediction and has great significance for rumor monitoring and malicious account detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
zzz发布了新的文献求助10
1秒前
Rain应助不懂科研的萌采纳,获得10
2秒前
穆晴筱筱发布了新的文献求助30
2秒前
2秒前
方星发布了新的文献求助10
2秒前
波妞发布了新的文献求助10
3秒前
嗒帅完成签到,获得积分10
4秒前
orixero应助网络太上皇采纳,获得30
4秒前
4秒前
ackee完成签到,获得积分10
5秒前
Zzzzz发布了新的文献求助10
6秒前
云阿柔完成签到,获得积分10
6秒前
小蘑菇应助Fr采纳,获得10
7秒前
sx发布了新的文献求助10
7秒前
8秒前
SYLH应助科研通管家采纳,获得10
8秒前
Hello应助科研通管家采纳,获得10
8秒前
SYLH应助科研通管家采纳,获得10
8秒前
彭于晏应助科研通管家采纳,获得10
8秒前
今后应助科研通管家采纳,获得10
8秒前
wishes关注了科研通微信公众号
8秒前
传奇3应助科研通管家采纳,获得10
8秒前
丘比特应助科研通管家采纳,获得10
9秒前
烟花应助科研通管家采纳,获得10
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
SYLH应助科研通管家采纳,获得10
9秒前
9秒前
传奇3应助科研通管家采纳,获得10
9秒前
上官若男应助科研通管家采纳,获得10
9秒前
天天快乐应助科研通管家采纳,获得10
9秒前
上官若男应助科研通管家采纳,获得10
9秒前
852应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
10秒前
充电宝应助科研通管家采纳,获得10
10秒前
完美世界应助科研通管家采纳,获得10
10秒前
隐形曼青应助科研通管家采纳,获得10
10秒前
深情安青应助科研通管家采纳,获得10
10秒前
隐形曼青应助科研通管家采纳,获得10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
The organometallic chemistry of the transition metals 7th 666
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Fundamentals of Medical Device Regulations, Fifth Edition(e-book) 300
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
The phanerozoic carbon cycle: CO2 and O2 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3699467
求助须知:如何正确求助?哪些是违规求助? 3250100
关于积分的说明 9866886
捐赠科研通 2961865
什么是DOI,文献DOI怎么找? 1624270
邀请新用户注册赠送积分活动 769247
科研通“疑难数据库(出版商)”最低求助积分说明 742144