Information Propagation Prediction Based on Spatial–Temporal Attention and Heterogeneous Graph Convolutional Networks

计算机科学 代表(政治) 图形 编码 机制(生物学) 光学(聚焦) 卷积神经网络 人工智能 机器学习 数据挖掘 理论计算机科学 生物化学 化学 哲学 物理 光学 认识论 政治 政治学 法学 基因
作者
Xiaoyang Liu,Chenxiang Miao,Giacomo Fiumara,Pasquale De Meo
出处
期刊:IEEE Transactions on Computational Social Systems [Institute of Electrical and Electronics Engineers]
卷期号:11 (1): 945-958 被引量:12
标识
DOI:10.1109/tcss.2023.3244573
摘要

With the development of deep learning and other technologies, the research of information propagation prediction has also achieved important research achievements. However, the existing information diffusion studies either focus on the attention relationships of users or they predict the information according to the diffusion relationships of users, which makes the prediction results have certain limitations. Therefore, a prediction model has been proposed spatial–temporal attention heterogeneous graph convolutional networks (STAHGCNs). First, we use GCN to learn user influence relationships and user behavior relationships, and we propose a user representation fusion mechanism to learn the user characteristics. Second, to account for the dynamics of user behavior, a temporal attention mechanism strategy is used to encode time into the heterogeneous graph to obtain a more expressive user representation. Finally, the obtained user representation is input into the multihead attention mechanism for information propagation prediction. Experimental results performed on the Twitter, Douban, Digg, and Memetracker datasets have shown that the proposed STAHGCN model increased by 8.80% and 6.74% at hits@N and map@N, respectively, which are significantly better than the original latest DyHGCN model. The proposed STAHGCN model effectively integrates spatial factors, such as time factor, user influence, and behavior, which greatly improves the accuracy of information propagation prediction and has great significance for rumor monitoring and malicious account detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
glocon发布了新的文献求助10
1秒前
尔信完成签到 ,获得积分10
1秒前
1秒前
何三完成签到 ,获得积分10
2秒前
AXQ完成签到,获得积分10
3秒前
ZrAug21完成签到,获得积分10
4秒前
5秒前
6秒前
sln完成签到,获得积分10
6秒前
聖璕完成签到,获得积分10
8秒前
wang给wang的求助进行了留言
9秒前
达奈林发布了新的文献求助10
13秒前
小蘑菇应助ZrAug21采纳,获得10
13秒前
april完成签到,获得积分10
13秒前
14秒前
16秒前
调皮翠霜发布了新的文献求助10
18秒前
glocon完成签到,获得积分10
18秒前
wjj完成签到 ,获得积分10
18秒前
难过千凡发布了新的文献求助10
19秒前
19秒前
20秒前
caq发布了新的文献求助10
20秒前
21秒前
小二郎应助12138采纳,获得10
23秒前
24秒前
24秒前
默默访风发布了新的文献求助10
25秒前
27秒前
28秒前
沐金秋发布了新的文献求助10
28秒前
sss完成签到 ,获得积分10
30秒前
汉堡包应助心灵美的翠采纳,获得20
30秒前
小二郎应助zzr元亨利贞采纳,获得10
31秒前
Akim应助byecslx采纳,获得30
32秒前
严昌发布了新的文献求助10
33秒前
斯文败类应助嘻嘻采纳,获得10
34秒前
温暖的以旋完成签到,获得积分10
35秒前
luyu完成签到,获得积分20
35秒前
爱撒娇的鱼应助xiaoqiang采纳,获得20
36秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138618
求助须知:如何正确求助?哪些是违规求助? 2789599
关于积分的说明 7791655
捐赠科研通 2445949
什么是DOI,文献DOI怎么找? 1300780
科研通“疑难数据库(出版商)”最低求助积分说明 626058
版权声明 601079