How can machine learning and multiscale modeling benefit ocular drug development?

计算机科学 生物信息学 过程(计算) 药物开发 生化工程 人工智能 管理科学 风险分析(工程) 数据科学 机器学习 药品 工程类 医学 药理学 操作系统 化学 基因 生物化学
作者
Nannan Wang,Yunsen Zhang,Wei Wang,Zhuyifan Ye,Hongyu Chen,Guanghui Hu,Defang Ouyang
出处
期刊:Advanced Drug Delivery Reviews [Elsevier BV]
卷期号:196: 114772-114772 被引量:30
标识
DOI:10.1016/j.addr.2023.114772
摘要

The eyes possess sophisticated physiological structures, diverse disease targets, limited drug delivery space, distinctive barriers, and complicated biomechanical processes, requiring a more in-depth understanding of the interactions between drug delivery systems and biological systems for ocular formulation development. However, the tiny size of the eyes makes sampling difficult and invasive studies costly and ethically constrained. Developing ocular formulations following conventional trial-and-error formulation and manufacturing process screening procedures is inefficient. Along with the popularity of computational pharmaceutics, non-invasive in silico modeling & simulation offer new opportunities for the paradigm shift of ocular formulation development. The current work first systematically reviews the theoretical underpinnings, advanced applications, and unique advantages of data-driven machine learning and multiscale simulation approaches represented by molecular simulation, mathematical modeling, and pharmacokinetic (PK)/pharmacodynamic (PD) modeling for ocular drug development. Following this, a new computer-driven framework for rational pharmaceutical formulation design is proposed, inspired by the potential of in silico explorations in understanding drug delivery details and facilitating drug formulation design. Lastly, to promote the paradigm shift, integrated in silico methodologies were highlighted, and discussions on data challenges, model practicality, personalized modeling, regulatory science, interdisciplinary collaboration, and talent training were conducted in detail with a view to achieving more efficient objective-oriented pharmaceutical formulation design.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
雷晓铃完成签到,获得积分10
刚刚
大模型应助专注的糖豆采纳,获得10
刚刚
1秒前
1秒前
pan发布了新的文献求助10
2秒前
eryday0完成签到 ,获得积分10
4秒前
4秒前
于丽热巴完成签到,获得积分10
4秒前
小韩童学完成签到,获得积分10
4秒前
hehe完成签到,获得积分10
5秒前
6秒前
6秒前
椋梦发布了新的文献求助30
6秒前
orixero应助东东采纳,获得10
6秒前
乔木发布了新的文献求助10
7秒前
cc完成签到 ,获得积分10
8秒前
刘刘佳发布了新的文献求助30
9秒前
yeezy123发布了新的文献求助30
10秒前
知识进脑子吧完成签到,获得积分10
10秒前
11秒前
枕月听松完成签到,获得积分10
11秒前
13秒前
Archie完成签到,获得积分10
14秒前
14秒前
16秒前
量子星尘发布了新的文献求助10
17秒前
17秒前
文静身边充满小确幸完成签到 ,获得积分10
18秒前
勤恳曼卉完成签到,获得积分10
19秒前
19秒前
叶潭发布了新的文献求助10
19秒前
19秒前
20秒前
pan完成签到,获得积分10
21秒前
我是老大应助文艺宛秋采纳,获得10
22秒前
脆脆鲨完成签到 ,获得积分10
22秒前
22秒前
太叔夜南发布了新的文献求助10
23秒前
爱笑碧玉完成签到,获得积分10
23秒前
核桃发布了新的文献求助10
23秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5142528
求助须知:如何正确求助?哪些是违规求助? 4340819
关于积分的说明 13518240
捐赠科研通 4180740
什么是DOI,文献DOI怎么找? 2292579
邀请新用户注册赠送积分活动 1293245
关于科研通互助平台的介绍 1235752