How can machine learning and multiscale modeling benefit ocular drug development?

计算机科学 生物信息学 过程(计算) 药物开发 生化工程 人工智能 管理科学 风险分析(工程) 数据科学 机器学习 药品 工程类 医学 药理学 操作系统 化学 基因 生物化学
作者
Nannan Wang,Yunsen Zhang,Wei Wang,Zhuyifan Ye,Hongyu Chen,Guanghui Hu,Defang Ouyang
出处
期刊:Advanced Drug Delivery Reviews [Elsevier]
卷期号:196: 114772-114772 被引量:30
标识
DOI:10.1016/j.addr.2023.114772
摘要

The eyes possess sophisticated physiological structures, diverse disease targets, limited drug delivery space, distinctive barriers, and complicated biomechanical processes, requiring a more in-depth understanding of the interactions between drug delivery systems and biological systems for ocular formulation development. However, the tiny size of the eyes makes sampling difficult and invasive studies costly and ethically constrained. Developing ocular formulations following conventional trial-and-error formulation and manufacturing process screening procedures is inefficient. Along with the popularity of computational pharmaceutics, non-invasive in silico modeling & simulation offer new opportunities for the paradigm shift of ocular formulation development. The current work first systematically reviews the theoretical underpinnings, advanced applications, and unique advantages of data-driven machine learning and multiscale simulation approaches represented by molecular simulation, mathematical modeling, and pharmacokinetic (PK)/pharmacodynamic (PD) modeling for ocular drug development. Following this, a new computer-driven framework for rational pharmaceutical formulation design is proposed, inspired by the potential of in silico explorations in understanding drug delivery details and facilitating drug formulation design. Lastly, to promote the paradigm shift, integrated in silico methodologies were highlighted, and discussions on data challenges, model practicality, personalized modeling, regulatory science, interdisciplinary collaboration, and talent training were conducted in detail with a view to achieving more efficient objective-oriented pharmaceutical formulation design.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
千早爱音应助123采纳,获得10
2秒前
2秒前
chenmeimei2012完成签到 ,获得积分10
3秒前
3秒前
John发布了新的文献求助10
4秒前
5秒前
苟文锋发布了新的文献求助10
6秒前
7秒前
eating完成签到,获得积分10
8秒前
Windsea发布了新的文献求助10
9秒前
9秒前
9秒前
研友_VZG7GZ应助科研通管家采纳,获得10
9秒前
小二郎应助科研通管家采纳,获得10
9秒前
小蘑菇应助科研通管家采纳,获得10
9秒前
传奇3应助科研通管家采纳,获得10
9秒前
烟花应助科研通管家采纳,获得10
9秒前
清脆天空发布了新的文献求助10
9秒前
丘比特应助科研通管家采纳,获得10
9秒前
及禾应助科研通管家采纳,获得20
9秒前
9秒前
浮游应助科研通管家采纳,获得10
10秒前
fyattojsk应助科研通管家采纳,获得20
10秒前
酷波er应助科研通管家采纳,获得10
10秒前
所所应助科研通管家采纳,获得10
10秒前
浮游应助科研通管家采纳,获得10
10秒前
共享精神应助科研通管家采纳,获得10
10秒前
田様应助科研通管家采纳,获得10
10秒前
情怀应助科研通管家采纳,获得10
10秒前
Orange应助科研通管家采纳,获得30
10秒前
李爱国应助科研通管家采纳,获得10
10秒前
无花果应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
谦让疾完成签到,获得积分20
12秒前
14秒前
Ava应助narcol采纳,获得30
14秒前
JamesPei应助Helium采纳,获得10
14秒前
清脆天空完成签到,获得积分10
16秒前
煜琪完成签到 ,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5299457
求助须知:如何正确求助?哪些是违规求助? 4447594
关于积分的说明 13843316
捐赠科研通 4333203
什么是DOI,文献DOI怎么找? 2378632
邀请新用户注册赠送积分活动 1373923
关于科研通互助平台的介绍 1339452