HRLE-SARDet: A Lightweight SAR Target Detection Algorithm Based on Hybrid Representation Learning Enhancement

计算机科学 合成孔径雷达 人工智能 深度学习 特征学习 特征提取 特征(语言学) 模式识别(心理学) 哲学 语言学
作者
Zheng Zhou,Jie Chen,Zhixiang Huang,Jianming Lv,Jiaxing Song,Honglin Luo,Bocai Wu,Yingsong Li,Paulo S. R. Diniz
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-22 被引量:13
标识
DOI:10.1109/tgrs.2023.3251694
摘要

In recent years, deep learning has been widely used in remote sensing, especially in the field of synthetic aperture radar (SAR) image target detection. However, all of these deep learning models continue increasing the network’s depth and width without maintaining a good balance between accuracy and speed. Therefore, in this paper, we propose a hybrid representation learning-enhanced SAR target detection algorithm based on the unique features of SAR images from a lightweight perspective called HRLE-SARDet. First, we design a lightweight and scattering feature extraction backbone that is more suitable for SAR image data. Second, for the multiscale feature discrepancy, we design a new multiscale feature fusion neck. Next, to better extract the scattering information from small targets of SAR images and improve the detection accuracy, we design a lightweight hybrid representation learning enhancement module. Finally, to better fit target detection for SAR image datasets, we redesign a more flexible loss function, which allows for an easy adjustment of the importance of polynomial bases according to the target task and dataset. Extensive experimental results on three SAR image ship target datasets (SSDD, AIR-SARShip-2.0, and HRSID) and a newly released large multiclass target SAR dataset (MSAR-1.0) show that our HRLE-SARDet achieves 98.4%, 79.2%, 92.5%, and 88.4% mAPs (mean Average Precision) with only 1.09 M parameters and 2.5 G floating-point operations (FLOPs) on the SSDD, AIR-SARShip-2.0, HRSID, and MSAR-1.0 datasets, which is an excellent performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的函函应助六六采纳,获得10
刚刚
刚刚
yinzenglinnn完成签到,获得积分10
刚刚
小刷子完成签到,获得积分10
1秒前
小璟发布了新的文献求助10
1秒前
1秒前
流年发布了新的文献求助10
2秒前
凸凸发布了新的文献求助10
2秒前
daisy发布了新的文献求助10
3秒前
画檐蛛网发布了新的文献求助10
3秒前
3秒前
4秒前
快乐源泉发布了新的文献求助10
4秒前
bjbmtxy发布了新的文献求助10
6秒前
6秒前
6秒前
YY完成签到,获得积分10
8秒前
任性的小MM完成签到,获得积分10
8秒前
桐桐应助知性的剑身采纳,获得10
9秒前
yymm发布了新的文献求助10
10秒前
wanci应助小璟采纳,获得10
10秒前
10秒前
10秒前
11秒前
QXS驳回了小二郎应助
11秒前
Abi发布了新的文献求助10
12秒前
流年完成签到,获得积分10
12秒前
12秒前
来日可追应助韶安萱采纳,获得10
13秒前
我像风一样自由完成签到 ,获得积分10
13秒前
14秒前
14秒前
14秒前
杨光发布了新的文献求助10
14秒前
贾舒涵发布了新的文献求助10
16秒前
华仔应助Yuxin采纳,获得10
16秒前
buzhinianjiu发布了新的文献求助10
17秒前
17秒前
17秒前
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 720
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Typology of Conditional Constructions 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3565965
求助须知:如何正确求助?哪些是违规求助? 3138688
关于积分的说明 9428637
捐赠科研通 2839429
什么是DOI,文献DOI怎么找? 1560725
邀请新用户注册赠送积分活动 729866
科研通“疑难数据库(出版商)”最低求助积分说明 717679