Spatial–Temporal Complex Graph Convolution Network for Traffic Flow Prediction

计算机科学 图形 卷积(计算机科学) 特征提取 空间相关性 模式识别(心理学) 数据挖掘 人工智能 理论计算机科学 人工神经网络 电信
作者
Yinxin Bao,Jiashuang Huang,Qin-Qin Shen,Yang Cao,Weiping Ding,Zhenquan Shi,Quan Shi
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:121: 106044-106044 被引量:30
标识
DOI:10.1016/j.engappai.2023.106044
摘要

Traffic flow prediction remains an ongoing hot topic in the field of Intelligent Transportation System. The state-of-the-art traffic flow prediction models can effectively extract both spatial and temporal features of traffic flow data, but ignore the correlation and external interference between traffic nodes. To this end, this paper proposes a novel method based on Spatial–Temporal Complex Graph Convolution Network (ST-CGCN) for traffic flow prediction. Specifically, we first constructs the distance matrix, the data correlation matrix, and the comfort measurement matrix according to the geographical locations, the historical data record, and the external interference between traffic nodes. Then, these three matrices are fused into a complex correlation matrix by introducing self-learning dynamic weights to improve the joint modeling ability of spatial–temporal features and external factors. Next, a spatial feature extraction module and a temporal feature extraction module are designed to characterize dynamic spatial–temporal features. The spatial feature extraction module consists of a graph convolution operator with a proposed complex correlation matrix and a residual unit. The temporal feature extraction module consists of a 3D convolution operator and a Long Short-Term Memory (LSTM). Experiments constructed on five real-world datasets demonstrate that the new proposed ST-CGCN is more effective than several existing deep learning based traffic flow prediction models. The key source code and data are available at https://github.com/Bounger2/ST-CGCN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
笑点低凡桃完成签到,获得积分10
1秒前
小小蟋蟀完成签到,获得积分10
1秒前
秀丽思远完成签到,获得积分10
1秒前
科研通AI5应助糊涂的百川采纳,获得10
2秒前
弱水发布了新的文献求助10
2秒前
hippo发布了新的文献求助10
2秒前
苒苒完成签到,获得积分10
2秒前
烂漫饼干完成签到,获得积分10
2秒前
Akim应助失眠小猫咪采纳,获得10
2秒前
JamesPei应助123采纳,获得10
2秒前
3秒前
曹煜晗发布了新的文献求助10
3秒前
3秒前
大模型应助召唤兽采纳,获得10
3秒前
3秒前
某某某完成签到,获得积分10
4秒前
桐桐应助李不开你采纳,获得10
5秒前
5秒前
cjy完成签到,获得积分10
5秒前
5秒前
英姑应助仗炮由纪采纳,获得10
5秒前
王大敏给王大敏的求助进行了留言
6秒前
mingxuan完成签到,获得积分10
6秒前
殷勤的咖啡完成签到,获得积分10
7秒前
希望天下0贩的0应助11采纳,获得10
7秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
今后应助zhao采纳,获得10
7秒前
英俊的铭应助su采纳,获得10
8秒前
8秒前
9秒前
夏夜微凉完成签到,获得积分10
10秒前
10秒前
10秒前
花花发布了新的文献求助20
10秒前
攒星星完成签到,获得积分10
10秒前
sugarballer完成签到,获得积分10
10秒前
11秒前
齐小妮完成签到,获得积分20
11秒前
卡卡卡卡卡卡完成签到,获得积分10
12秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603838
求助须知:如何正确求助?哪些是违规求助? 4012374
关于积分的说明 12423535
捐赠科研通 3692896
什么是DOI,文献DOI怎么找? 2035955
邀请新用户注册赠送积分活动 1069072
科研通“疑难数据库(出版商)”最低求助积分说明 953559