Spatial–Temporal Complex Graph Convolution Network for Traffic Flow Prediction

计算机科学 图形 卷积(计算机科学) 特征提取 空间相关性 模式识别(心理学) 数据挖掘 人工智能 理论计算机科学 人工神经网络 电信
作者
Yinxin Bao,Jiashuang Huang,Qinqin Shen,Yang Cao,Weiping Ding,Zhenquan Shi,Quan Shi
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:121: 106044-106044 被引量:105
标识
DOI:10.1016/j.engappai.2023.106044
摘要

Traffic flow prediction remains an ongoing hot topic in the field of Intelligent Transportation System. The state-of-the-art traffic flow prediction models can effectively extract both spatial and temporal features of traffic flow data, but ignore the correlation and external interference between traffic nodes. To this end, this paper proposes a novel method based on Spatial–Temporal Complex Graph Convolution Network (ST-CGCN) for traffic flow prediction. Specifically, we first constructs the distance matrix, the data correlation matrix, and the comfort measurement matrix according to the geographical locations, the historical data record, and the external interference between traffic nodes. Then, these three matrices are fused into a complex correlation matrix by introducing self-learning dynamic weights to improve the joint modeling ability of spatial–temporal features and external factors. Next, a spatial feature extraction module and a temporal feature extraction module are designed to characterize dynamic spatial–temporal features. The spatial feature extraction module consists of a graph convolution operator with a proposed complex correlation matrix and a residual unit. The temporal feature extraction module consists of a 3D convolution operator and a Long Short-Term Memory (LSTM). Experiments constructed on five real-world datasets demonstrate that the new proposed ST-CGCN is more effective than several existing deep learning based traffic flow prediction models. The key source code and data are available at https://github.com/Bounger2/ST-CGCN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Wonder完成签到,获得积分10
1秒前
科研通AI2S应助y943采纳,获得10
1秒前
1秒前
斯文败类应助BYN采纳,获得10
1秒前
可靠诗筠完成签到 ,获得积分10
1秒前
1秒前
旺旺完成签到,获得积分10
1秒前
Silentjj84发布了新的文献求助10
2秒前
2秒前
宽宽完成签到,获得积分10
2秒前
乳酸菌完成签到,获得积分10
2秒前
yx发布了新的文献求助10
2秒前
嗝嗝完成签到,获得积分10
2秒前
cdragon完成签到,获得积分10
2秒前
陶醉紫菜发布了新的文献求助10
3秒前
莉莉发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
Giroro_roro完成签到,获得积分10
4秒前
HughWang发布了新的文献求助10
4秒前
WGY完成签到,获得积分20
4秒前
黎颜发布了新的文献求助10
4秒前
zm完成签到,获得积分20
4秒前
lifengxia发布了新的文献求助30
4秒前
比奇堡艺术家完成签到,获得积分10
4秒前
4秒前
重要行云发布了新的文献求助10
4秒前
5秒前
5秒前
qiqi完成签到,获得积分10
5秒前
6秒前
我思故我在完成签到,获得积分0
6秒前
tuya完成签到,获得积分10
6秒前
6秒前
木木酱完成签到,获得积分0
6秒前
淡漠人生发布了新的文献求助10
6秒前
潇洒紫真发布了新的文献求助10
7秒前
7秒前
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5651881
求助须知:如何正确求助?哪些是违规求助? 4786125
关于积分的说明 15056850
捐赠科研通 4810523
什么是DOI,文献DOI怎么找? 2573252
邀请新用户注册赠送积分活动 1529137
关于科研通互助平台的介绍 1488090