Spatial–Temporal Complex Graph Convolution Network for Traffic Flow Prediction

计算机科学 图形 卷积(计算机科学) 特征提取 空间相关性 模式识别(心理学) 数据挖掘 人工智能 理论计算机科学 人工神经网络 电信
作者
Yinxin Bao,Jiashuang Huang,Qinqin Shen,Yang Cao,Weiping Ding,Zhenquan Shi,Quan Shi
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:121: 106044-106044 被引量:84
标识
DOI:10.1016/j.engappai.2023.106044
摘要

Traffic flow prediction remains an ongoing hot topic in the field of Intelligent Transportation System. The state-of-the-art traffic flow prediction models can effectively extract both spatial and temporal features of traffic flow data, but ignore the correlation and external interference between traffic nodes. To this end, this paper proposes a novel method based on Spatial–Temporal Complex Graph Convolution Network (ST-CGCN) for traffic flow prediction. Specifically, we first constructs the distance matrix, the data correlation matrix, and the comfort measurement matrix according to the geographical locations, the historical data record, and the external interference between traffic nodes. Then, these three matrices are fused into a complex correlation matrix by introducing self-learning dynamic weights to improve the joint modeling ability of spatial–temporal features and external factors. Next, a spatial feature extraction module and a temporal feature extraction module are designed to characterize dynamic spatial–temporal features. The spatial feature extraction module consists of a graph convolution operator with a proposed complex correlation matrix and a residual unit. The temporal feature extraction module consists of a 3D convolution operator and a Long Short-Term Memory (LSTM). Experiments constructed on five real-world datasets demonstrate that the new proposed ST-CGCN is more effective than several existing deep learning based traffic flow prediction models. The key source code and data are available at https://github.com/Bounger2/ST-CGCN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助害怕的鞯采纳,获得10
刚刚
cdragon完成签到,获得积分10
刚刚
阔达采白完成签到,获得积分10
刚刚
大意的傻春完成签到 ,获得积分10
1秒前
不能当饭吃完成签到,获得积分10
1秒前
莫封叶完成签到,获得积分10
1秒前
1秒前
1秒前
momo1235完成签到,获得积分10
2秒前
cl完成签到,获得积分10
2秒前
fbwg完成签到,获得积分10
3秒前
白rain完成签到,获得积分10
3秒前
现代宝宝完成签到,获得积分10
3秒前
aging123发布了新的文献求助10
3秒前
kong完成签到,获得积分10
4秒前
5秒前
wsx4321完成签到,获得积分0
5秒前
小畅完成签到,获得积分10
5秒前
5秒前
5秒前
sinlar发布了新的文献求助10
6秒前
三七完成签到 ,获得积分10
6秒前
Simple完成签到,获得积分10
6秒前
乐乐应助西陆采纳,获得10
6秒前
晓听竹雨完成签到,获得积分10
7秒前
小白完成签到,获得积分10
8秒前
阿伦完成签到,获得积分10
8秒前
liujianxin发布了新的文献求助10
9秒前
浮游应助dd采纳,获得10
9秒前
有我ID随机吗完成签到,获得积分10
9秒前
Oil完成签到,获得积分10
9秒前
左旋多巴完成签到,获得积分10
9秒前
9秒前
廿二发布了新的文献求助10
10秒前
小屁孩完成签到,获得积分10
10秒前
小帅完成签到,获得积分10
10秒前
Rrrr_完成签到,获得积分10
10秒前
11秒前
11秒前
Lynn完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5315591
求助须知:如何正确求助?哪些是违规求助? 4458172
关于积分的说明 13868932
捐赠科研通 4347796
什么是DOI,文献DOI怎么找? 2387970
邀请新用户注册赠送积分活动 1382083
关于科研通互助平台的介绍 1351424