Spatial–Temporal Complex Graph Convolution Network for Traffic Flow Prediction

计算机科学 图形 卷积(计算机科学) 特征提取 空间相关性 模式识别(心理学) 数据挖掘 人工智能 理论计算机科学 人工神经网络 电信
作者
Yinxin Bao,Jiashuang Huang,Qinqin Shen,Yang Cao,Weiping Ding,Zhenquan Shi,Quan Shi
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:121: 106044-106044 被引量:84
标识
DOI:10.1016/j.engappai.2023.106044
摘要

Traffic flow prediction remains an ongoing hot topic in the field of Intelligent Transportation System. The state-of-the-art traffic flow prediction models can effectively extract both spatial and temporal features of traffic flow data, but ignore the correlation and external interference between traffic nodes. To this end, this paper proposes a novel method based on Spatial–Temporal Complex Graph Convolution Network (ST-CGCN) for traffic flow prediction. Specifically, we first constructs the distance matrix, the data correlation matrix, and the comfort measurement matrix according to the geographical locations, the historical data record, and the external interference between traffic nodes. Then, these three matrices are fused into a complex correlation matrix by introducing self-learning dynamic weights to improve the joint modeling ability of spatial–temporal features and external factors. Next, a spatial feature extraction module and a temporal feature extraction module are designed to characterize dynamic spatial–temporal features. The spatial feature extraction module consists of a graph convolution operator with a proposed complex correlation matrix and a residual unit. The temporal feature extraction module consists of a 3D convolution operator and a Long Short-Term Memory (LSTM). Experiments constructed on five real-world datasets demonstrate that the new proposed ST-CGCN is more effective than several existing deep learning based traffic flow prediction models. The key source code and data are available at https://github.com/Bounger2/ST-CGCN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
徐炎完成签到,获得积分10
1秒前
1秒前
wiken发布了新的文献求助30
1秒前
匪石发布了新的文献求助10
2秒前
把拼好的饭给你完成签到,获得积分10
2秒前
2秒前
搜集达人应助草人乙采纳,获得10
3秒前
Ambitious完成签到,获得积分10
3秒前
陈星完成签到,获得积分10
3秒前
绿狗玩偶发布了新的文献求助10
6秒前
自然卷发布了新的文献求助30
6秒前
李健的小迷弟应助yy采纳,获得10
7秒前
英俊的铭应助小巧寻桃采纳,获得10
7秒前
科研通AI2S应助stt采纳,获得10
8秒前
123完成签到 ,获得积分10
11秒前
坚定的泥猴桃完成签到 ,获得积分10
12秒前
12秒前
同學你該吃藥了完成签到 ,获得积分10
12秒前
13秒前
13秒前
13秒前
15秒前
xvping完成签到,获得积分10
15秒前
16秒前
斯文败类应助闪闪落雁采纳,获得10
16秒前
16秒前
朴素炎彬完成签到,获得积分20
17秒前
汉堡包应助兀那狗子别跑采纳,获得10
17秒前
执着冷雁发布了新的文献求助10
18秒前
syp发布了新的文献求助10
19秒前
泡泡完成签到 ,获得积分10
19秒前
19秒前
orixero应助唐tang采纳,获得10
20秒前
含蓄的敏发布了新的文献求助10
20秒前
充电宝应助发文章12138采纳,获得10
20秒前
xiaoxiao发布了新的文献求助10
20秒前
包容煎饼发布了新的文献求助10
21秒前
卷王完成签到,获得积分10
21秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5300240
求助须知:如何正确求助?哪些是违规求助? 4448171
关于积分的说明 13845185
捐赠科研通 4333829
什么是DOI,文献DOI怎么找? 2379156
邀请新用户注册赠送积分活动 1374314
关于科研通互助平台的介绍 1339962