Spatial–Temporal Complex Graph Convolution Network for Traffic Flow Prediction

计算机科学 图形 卷积(计算机科学) 特征提取 空间相关性 模式识别(心理学) 数据挖掘 人工智能 理论计算机科学 人工神经网络 电信
作者
Yinxin Bao,Jiashuang Huang,Qin-Qin Shen,Yang Cao,Weiping Ding,Zhenquan Shi,Quan Shi
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:121: 106044-106044 被引量:30
标识
DOI:10.1016/j.engappai.2023.106044
摘要

Traffic flow prediction remains an ongoing hot topic in the field of Intelligent Transportation System. The state-of-the-art traffic flow prediction models can effectively extract both spatial and temporal features of traffic flow data, but ignore the correlation and external interference between traffic nodes. To this end, this paper proposes a novel method based on Spatial–Temporal Complex Graph Convolution Network (ST-CGCN) for traffic flow prediction. Specifically, we first constructs the distance matrix, the data correlation matrix, and the comfort measurement matrix according to the geographical locations, the historical data record, and the external interference between traffic nodes. Then, these three matrices are fused into a complex correlation matrix by introducing self-learning dynamic weights to improve the joint modeling ability of spatial–temporal features and external factors. Next, a spatial feature extraction module and a temporal feature extraction module are designed to characterize dynamic spatial–temporal features. The spatial feature extraction module consists of a graph convolution operator with a proposed complex correlation matrix and a residual unit. The temporal feature extraction module consists of a 3D convolution operator and a Long Short-Term Memory (LSTM). Experiments constructed on five real-world datasets demonstrate that the new proposed ST-CGCN is more effective than several existing deep learning based traffic flow prediction models. The key source code and data are available at https://github.com/Bounger2/ST-CGCN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健应助荷月初六采纳,获得10
刚刚
学术虫完成签到,获得积分20
1秒前
踏实天亦发布了新的文献求助10
1秒前
CipherSage应助myy采纳,获得10
1秒前
2秒前
Owen应助小文cremen采纳,获得10
3秒前
会神完成签到,获得积分10
3秒前
亮晶晶完成签到 ,获得积分10
4秒前
感动水杯发布了新的文献求助20
4秒前
lkk发布了新的文献求助10
5秒前
5秒前
5秒前
6秒前
aaaa完成签到,获得积分20
6秒前
7秒前
xbb0905发布了新的文献求助10
7秒前
汉堡包应助林平之采纳,获得10
7秒前
猪猪hero应助科研通管家采纳,获得10
8秒前
科目三应助科研通管家采纳,获得10
8秒前
CodeCraft应助科研通管家采纳,获得10
8秒前
SHAO应助科研通管家采纳,获得10
8秒前
南北完成签到,获得积分10
8秒前
盛夏之末应助科研通管家采纳,获得10
8秒前
8秒前
桐桐应助科研通管家采纳,获得10
9秒前
所所应助科研通管家采纳,获得10
9秒前
Notdodead应助科研通管家采纳,获得10
9秒前
piers应助科研通管家采纳,获得10
9秒前
今后应助科研通管家采纳,获得10
9秒前
dongjy应助科研通管家采纳,获得20
9秒前
我是老大应助sjx采纳,获得10
9秒前
9秒前
CipherSage应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
无花果应助科研通管家采纳,获得10
9秒前
swan完成签到 ,获得积分10
9秒前
传奇3应助科研通管家采纳,获得10
9秒前
搜集达人应助科研通管家采纳,获得10
9秒前
SHAO应助科研通管家采纳,获得10
9秒前
9秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992317
求助须知:如何正确求助?哪些是违规求助? 3533285
关于积分的说明 11261852
捐赠科研通 3272704
什么是DOI,文献DOI怎么找? 1805867
邀请新用户注册赠送积分活动 882732
科研通“疑难数据库(出版商)”最低求助积分说明 809459