已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Machine learning for detecting DNA attachment on SPR biosensor

生物传感器 支持向量机 随机森林 人工智能 计算机科学 表面等离子共振 机器学习 决策树 模式识别(心理学) 感知器 人工神经网络 材料科学 纳米技术 纳米颗粒
作者
Himadri Shekhar Mondal,Khandaker Asif Ahmed,N. Birbilis,Md Zakir Hossain
出处
期刊:Scientific Reports [Springer Nature]
卷期号:13 (1) 被引量:11
标识
DOI:10.1038/s41598-023-29395-1
摘要

Abstract Optoelectric biosensors measure the conformational changes of biomolecules and their molecular interactions, allowing researchers to use them in different biomedical diagnostics and analysis activities. Among different biosensors, surface plasmon resonance (SPR)-based biosensors utilize label-free and gold-based plasmonic principles with high precision and accuracy, allowing these gold-based biosensors as one of the preferred methods. The dataset generated from these biosensors are being used in different machine learning (ML) models for disease diagnosis and prognosis, but there is a scarcity of models to develop or assess the accuracy of SPR-based biosensors and ensure a reliable dataset for downstream model development. Current study proposed innovative ML-based DNA detection and classification models from the reflective light angles on different gold surfaces of biosensors and associated properties. We have conducted several statistical analyses and different visualization techniques to evaluate the SPR-based dataset and applied t-SNE feature extraction and min-max normalization to differentiate classifiers of low-variances. We experimented with several ML classifiers, namely support vector machine (SVM), decision tree (DT), multi-layer perceptron (MLP), k-nearest neighbors (KNN), logistic regression (LR) and random forest (RF) and evaluated our findings in terms of different evaluation metrics. Our analysis showed the best accuracy of 0.94 by RF, DT and KNN for DNA classification and 0.96 by RF and KNN for DNA detection tasks. Considering area under the receiver operating characteristic curve (AUC) (0.97), precision (0.96) and F1-score (0.97), we found RF performed best for both tasks. Our research shows the potentiality of ML models in the field of biosensor development, which can be expanded to develop novel disease diagnosis and prognosis tools in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
jacyWung发布了新的文献求助10
1秒前
2秒前
2秒前
NAHIY发布了新的文献求助10
3秒前
笨笨完成签到,获得积分10
3秒前
思源应助wstcnsn采纳,获得10
3秒前
无花果应助leisurelft采纳,获得10
4秒前
Jasper应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
小蘑菇应助科研通管家采纳,获得10
5秒前
壮观问寒应助科研通管家采纳,获得10
5秒前
爆米花应助科研通管家采纳,获得30
5秒前
VDC应助科研通管家采纳,获得200
5秒前
白夜应助科研通管家采纳,获得20
5秒前
无名老大应助科研通管家采纳,获得50
5秒前
5秒前
JamesPei应助科研通管家采纳,获得10
6秒前
CC关闭了CC文献求助
6秒前
111发布了新的文献求助10
6秒前
8秒前
chenzitong0838完成签到 ,获得积分10
9秒前
9秒前
嘻嘻哈哈眼药水完成签到,获得积分10
10秒前
10秒前
NXNJ完成签到 ,获得积分10
10秒前
10秒前
巾帼完成签到,获得积分20
12秒前
寂寞酷鑫完成签到,获得积分10
12秒前
13秒前
您的慈父关注了科研通微信公众号
14秒前
chuhong发布了新的文献求助10
15秒前
15秒前
过儿过儿完成签到,获得积分10
16秒前
16秒前
chenzitong0838关注了科研通微信公众号
16秒前
www完成签到,获得积分10
19秒前
大模型应助NAHIY采纳,获得10
20秒前
Leofar发布了新的文献求助10
20秒前
Eyrjilc完成签到,获得积分10
21秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
The Oxford Handbook of Educational Psychology 600
有EBL数据库的大佬进 Matrix Mathematics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 遗传学 化学工程 基因 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3412951
求助须知:如何正确求助?哪些是违规求助? 3015441
关于积分的说明 8870366
捐赠科研通 2703154
什么是DOI,文献DOI怎么找? 1482085
科研通“疑难数据库(出版商)”最低求助积分说明 685118
邀请新用户注册赠送积分活动 679894