Machine learning for detecting DNA attachment on SPR biosensor

生物传感器 支持向量机 随机森林 人工智能 计算机科学 表面等离子共振 机器学习 决策树 模式识别(心理学) 感知器 人工神经网络 材料科学 纳米技术 纳米颗粒
作者
Himadri Shekhar Mondal,Khandaker Asif Ahmed,N. Birbilis,Md Zakir Hossain
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:13 (1) 被引量:11
标识
DOI:10.1038/s41598-023-29395-1
摘要

Abstract Optoelectric biosensors measure the conformational changes of biomolecules and their molecular interactions, allowing researchers to use them in different biomedical diagnostics and analysis activities. Among different biosensors, surface plasmon resonance (SPR)-based biosensors utilize label-free and gold-based plasmonic principles with high precision and accuracy, allowing these gold-based biosensors as one of the preferred methods. The dataset generated from these biosensors are being used in different machine learning (ML) models for disease diagnosis and prognosis, but there is a scarcity of models to develop or assess the accuracy of SPR-based biosensors and ensure a reliable dataset for downstream model development. Current study proposed innovative ML-based DNA detection and classification models from the reflective light angles on different gold surfaces of biosensors and associated properties. We have conducted several statistical analyses and different visualization techniques to evaluate the SPR-based dataset and applied t-SNE feature extraction and min-max normalization to differentiate classifiers of low-variances. We experimented with several ML classifiers, namely support vector machine (SVM), decision tree (DT), multi-layer perceptron (MLP), k-nearest neighbors (KNN), logistic regression (LR) and random forest (RF) and evaluated our findings in terms of different evaluation metrics. Our analysis showed the best accuracy of 0.94 by RF, DT and KNN for DNA classification and 0.96 by RF and KNN for DNA detection tasks. Considering area under the receiver operating characteristic curve (AUC) (0.97), precision (0.96) and F1-score (0.97), we found RF performed best for both tasks. Our research shows the potentiality of ML models in the field of biosensor development, which can be expanded to develop novel disease diagnosis and prognosis tools in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lyon完成签到,获得积分10
1秒前
薄荷发布了新的文献求助10
1秒前
5123完成签到,获得积分10
1秒前
ww完成签到 ,获得积分10
2秒前
元锦程完成签到,获得积分10
2秒前
5秒前
上官若男应助木南南采纳,获得10
5秒前
Big发布了新的文献求助10
6秒前
充电宝应助Wfmmm采纳,获得10
8秒前
9秒前
科研通AI5应助哇咔咔采纳,获得10
10秒前
元锦程发布了新的文献求助10
11秒前
zzz完成签到,获得积分10
12秒前
赘婿应助Hyh_采纳,获得10
13秒前
Hello应助付品聪采纳,获得10
13秒前
13秒前
hh完成签到,获得积分10
14秒前
Toby完成签到,获得积分10
15秒前
15秒前
大狒狒发布了新的文献求助10
16秒前
我萨达飒飒完成签到 ,获得积分10
16秒前
桃之夭夭发布了新的文献求助50
18秒前
18秒前
爱笑冷雁完成签到,获得积分10
19秒前
19秒前
CodeCraft应助stranger采纳,获得10
20秒前
20秒前
rwuab完成签到,获得积分10
21秒前
大狒狒完成签到,获得积分10
23秒前
25秒前
我是老大应助科研通管家采纳,获得10
27秒前
科研通AI5应助科研通管家采纳,获得10
27秒前
科研通AI2S应助科研通管家采纳,获得10
27秒前
丘比特应助科研通管家采纳,获得10
27秒前
科研通AI5应助科研通管家采纳,获得10
27秒前
李健应助科研通管家采纳,获得10
27秒前
吉祥如意应助科研通管家采纳,获得10
27秒前
吉祥如意应助科研通管家采纳,获得10
27秒前
Owen应助科研通管家采纳,获得10
27秒前
研友_VZG7GZ应助科研通管家采纳,获得10
27秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3736127
求助须知:如何正确求助?哪些是违规求助? 3279878
关于积分的说明 10017530
捐赠科研通 2996558
什么是DOI,文献DOI怎么找? 1644147
邀请新用户注册赠送积分活动 781808
科研通“疑难数据库(出版商)”最低求助积分说明 749475