Computation and Communication Efficient Federated Learning With Adaptive Model Pruning

计算机科学 修剪 加速 瓶颈 架空(工程) 分布式计算 计算 同步(交流) 过程(计算) 趋同(经济学) 方案(数学) 残余物 机器学习 人工智能 计算机工程 并行计算 计算机网络 算法 频道(广播) 嵌入式系统 农学 数学分析 操作系统 生物 经济 经济增长 数学
作者
Zhida Jiang,Yang Xu,Hongli Xu,Zhiyuan Wang,Jianchun Liu,Qian Chen,Chunming Qiao
出处
期刊:IEEE Transactions on Mobile Computing [IEEE Computer Society]
卷期号:23 (3): 2003-2021 被引量:10
标识
DOI:10.1109/tmc.2023.3247798
摘要

Federated learning (FL) has emerged as a promising distributed learning paradigm that enables a large number of mobile devices to cooperatively train a model without sharing their raw data. The iterative training process of FL incurs considerable computation and communication overhead. The workers participating in FL are usually heterogeneous and the workers with poor capabilities may become the bottleneck of model training. To address the challenges of resource overhead and system heterogeneity, this article proposes an efficient FL framework, called FedMP, that improves both computation and communication efficiency over heterogeneous workers through adaptive model pruning. We theoretically analyze the impact of pruning ratio on training performance, and employ a Multi-Armed Bandit based online learning algorithm to adaptively determine different pruning ratios for heterogeneous workers, even without any prior knowledge of their capabilities. As a result, each worker in FedMP can train and transmit the sub-model that fits its own capabilities, accelerating the training process without hurting model accuracy. To prevent the diverse structures of pruned models from affecting the training convergence, we further present a new parameter synchronization scheme, called Residual Recovery Synchronous Parallel (R2SP). Besides, our proposed framework can be extended to the peer-to-peer (P2P) setting. Extensive experiments on physical devices demonstrate that FedMP is effective for different heterogeneous scenarios and data distributions, and can provide up to 4.1× speedup compared to the existing FL methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
wang发布了新的文献求助10
1秒前
orixero应助shadowj1020采纳,获得10
1秒前
白鹭发布了新的文献求助10
1秒前
默默的奇迹完成签到,获得积分20
2秒前
xxfsx应助enen采纳,获得10
2秒前
3秒前
hhh完成签到 ,获得积分10
3秒前
3秒前
小婷发布了新的文献求助10
3秒前
XinG完成签到,获得积分10
4秒前
pcr163应助Unlung采纳,获得200
4秒前
5秒前
anders完成签到 ,获得积分10
6秒前
wins完成签到,获得积分10
6秒前
zzh发布了新的文献求助10
6秒前
科研通AI5应助周杰采纳,获得30
6秒前
怎么又困了完成签到,获得积分10
7秒前
霸气若男发布了新的文献求助10
7秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
酷波er应助科研通管家采纳,获得10
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
9秒前
Owen应助科研通管家采纳,获得10
9秒前
所所应助科研通管家采纳,获得10
9秒前
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
烟花应助科研通管家采纳,获得10
9秒前
小二郎应助科研通管家采纳,获得10
9秒前
9秒前
小蘑菇应助科研通管家采纳,获得10
10秒前
传奇3应助科研通管家采纳,获得10
10秒前
10秒前
情怀应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Hydrothermal Circulation and Seawater Chemistry: Links and Feedbacks 1200
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5153679
求助须知:如何正确求助?哪些是违规求助? 4349269
关于积分的说明 13541565
捐赠科研通 4191976
什么是DOI,文献DOI怎么找? 2299237
邀请新用户注册赠送积分活动 1299236
关于科研通互助平台的介绍 1244260