Computation and Communication Efficient Federated Learning With Adaptive Model Pruning

计算机科学 修剪 加速 瓶颈 架空(工程) 分布式计算 计算 同步(交流) 过程(计算) 趋同(经济学) 方案(数学) 残余物 机器学习 人工智能 计算机工程 并行计算 计算机网络 算法 频道(广播) 嵌入式系统 农学 数学分析 操作系统 生物 经济 经济增长 数学
作者
Zhida Jiang,Yang Xu,Hongli Xu,Zhiyuan Wang,Jianchun Liu,Qian Chen,Chunming Qiao
出处
期刊:IEEE Transactions on Mobile Computing [Institute of Electrical and Electronics Engineers]
卷期号:23 (3): 2003-2021 被引量:53
标识
DOI:10.1109/tmc.2023.3247798
摘要

Federated learning (FL) has emerged as a promising distributed learning paradigm that enables a large number of mobile devices to cooperatively train a model without sharing their raw data. The iterative training process of FL incurs considerable computation and communication overhead. The workers participating in FL are usually heterogeneous and the workers with poor capabilities may become the bottleneck of model training. To address the challenges of resource overhead and system heterogeneity, this article proposes an efficient FL framework, called FedMP, that improves both computation and communication efficiency over heterogeneous workers through adaptive model pruning. We theoretically analyze the impact of pruning ratio on training performance, and employ a Multi-Armed Bandit based online learning algorithm to adaptively determine different pruning ratios for heterogeneous workers, even without any prior knowledge of their capabilities. As a result, each worker in FedMP can train and transmit the sub-model that fits its own capabilities, accelerating the training process without hurting model accuracy. To prevent the diverse structures of pruned models from affecting the training convergence, we further present a new parameter synchronization scheme, called Residual Recovery Synchronous Parallel (R2SP). Besides, our proposed framework can be extended to the peer-to-peer (P2P) setting. Extensive experiments on physical devices demonstrate that FedMP is effective for different heterogeneous scenarios and data distributions, and can provide up to 4.1× speedup compared to the existing FL methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
机智的嘻嘻完成签到 ,获得积分10
3秒前
4秒前
淳于寻冬发布了新的文献求助10
4秒前
慕青应助直率沂采纳,获得10
5秒前
说说科研有多卷完成签到,获得积分10
5秒前
浮游应助weixiao采纳,获得10
5秒前
5秒前
maguodrgon完成签到,获得积分10
6秒前
ky幻影发布了新的文献求助10
6秒前
NexusExplorer应助胖子一个采纳,获得10
7秒前
7秒前
8秒前
lh0907发布了新的文献求助10
8秒前
JamesPei应助欢喜孤风采纳,获得10
9秒前
竹签子完成签到,获得积分10
10秒前
lotus完成签到,获得积分10
10秒前
俭朴的跳跳糖完成签到 ,获得积分10
11秒前
传奇3应助脑袋瓜采纳,获得10
11秒前
11秒前
12秒前
丘比特应助angin采纳,获得10
12秒前
研友_VZG7GZ应助简单茗采纳,获得10
12秒前
STEPHANIE发布了新的文献求助10
12秒前
直率沂完成签到,获得积分20
12秒前
摇滚蜗牛完成签到,获得积分10
12秒前
诚心的以亦完成签到,获得积分20
13秒前
tannie完成签到 ,获得积分10
13秒前
14秒前
14秒前
科研通AI6应助SRFIGH采纳,获得30
14秒前
15秒前
淳于寻冬完成签到,获得积分10
15秒前
OxO完成签到,获得积分10
16秒前
情怀应助db采纳,获得10
16秒前
犹豫灯泡发布了新的文献求助10
16秒前
烟花应助old杜采纳,获得10
16秒前
Owen应助温婉的不弱采纳,获得10
17秒前
冷静紫菱发布了新的文献求助10
17秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Washback Research in Language Assessment:Fundamentals and Contexts 400
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5469155
求助须知:如何正确求助?哪些是违规求助? 4572311
关于积分的说明 14335054
捐赠科研通 4499131
什么是DOI,文献DOI怎么找? 2464938
邀请新用户注册赠送积分活动 1453493
关于科研通互助平台的介绍 1428006