Computation and Communication Efficient Federated Learning With Adaptive Model Pruning

计算机科学 修剪 加速 瓶颈 架空(工程) 分布式计算 计算 同步(交流) 过程(计算) 趋同(经济学) 方案(数学) 残余物 机器学习 人工智能 计算机工程 并行计算 计算机网络 算法 频道(广播) 嵌入式系统 农学 数学分析 操作系统 生物 经济 经济增长 数学
作者
Zhida Jiang,Yang Xu,Hongli Xu,Zhiyuan Wang,Jianchun Liu,Qian Chen,Chunming Qiao
出处
期刊:IEEE Transactions on Mobile Computing [Institute of Electrical and Electronics Engineers]
卷期号:23 (3): 2003-2021 被引量:53
标识
DOI:10.1109/tmc.2023.3247798
摘要

Federated learning (FL) has emerged as a promising distributed learning paradigm that enables a large number of mobile devices to cooperatively train a model without sharing their raw data. The iterative training process of FL incurs considerable computation and communication overhead. The workers participating in FL are usually heterogeneous and the workers with poor capabilities may become the bottleneck of model training. To address the challenges of resource overhead and system heterogeneity, this article proposes an efficient FL framework, called FedMP, that improves both computation and communication efficiency over heterogeneous workers through adaptive model pruning. We theoretically analyze the impact of pruning ratio on training performance, and employ a Multi-Armed Bandit based online learning algorithm to adaptively determine different pruning ratios for heterogeneous workers, even without any prior knowledge of their capabilities. As a result, each worker in FedMP can train and transmit the sub-model that fits its own capabilities, accelerating the training process without hurting model accuracy. To prevent the diverse structures of pruned models from affecting the training convergence, we further present a new parameter synchronization scheme, called Residual Recovery Synchronous Parallel (R2SP). Besides, our proposed framework can be extended to the peer-to-peer (P2P) setting. Extensive experiments on physical devices demonstrate that FedMP is effective for different heterogeneous scenarios and data distributions, and can provide up to 4.1× speedup compared to the existing FL methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Akim应助xz采纳,获得10
刚刚
蒲公英完成签到,获得积分10
刚刚
舒适行云完成签到,获得积分10
刚刚
小壳儿发布了新的文献求助10
刚刚
打打应助xiaowan采纳,获得10
刚刚
linllll发布了新的文献求助10
刚刚
刚刚
1秒前
孙天睿完成签到,获得积分20
1秒前
糊涂的桐发布了新的文献求助30
1秒前
1秒前
1秒前
1秒前
1秒前
量子星尘发布了新的文献求助10
2秒前
小方发布了新的文献求助10
2秒前
阳阳发布了新的文献求助10
3秒前
善学以致用应助木樨采纳,获得10
3秒前
小胡完成签到,获得积分10
3秒前
花花兔发布了新的文献求助10
3秒前
3秒前
4秒前
科目三应助宇少爱学习哟采纳,获得10
4秒前
4秒前
4秒前
年年年年完成签到,获得积分10
5秒前
情怀应助LY123采纳,获得10
5秒前
科研通AI6.1应助LY123采纳,获得10
5秒前
5秒前
无辜鲂发布了新的文献求助10
6秒前
火星上莛完成签到,获得积分10
6秒前
6秒前
彭佳乐完成签到,获得积分10
6秒前
佳人琦许发布了新的文献求助10
6秒前
栗子发布了新的文献求助10
7秒前
7秒前
你好发布了新的文献求助10
7秒前
deabne发布了新的文献求助10
8秒前
8秒前
Owen应助lizhiqian2024采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5759707
求助须知:如何正确求助?哪些是违规求助? 5521712
关于积分的说明 15395175
捐赠科研通 4896734
什么是DOI,文献DOI怎么找? 2633863
邀请新用户注册赠送积分活动 1581925
关于科研通互助平台的介绍 1537410