Computation and Communication Efficient Federated Learning With Adaptive Model Pruning

计算机科学 修剪 加速 瓶颈 架空(工程) 分布式计算 计算 同步(交流) 过程(计算) 趋同(经济学) 方案(数学) 残余物 机器学习 人工智能 计算机工程 并行计算 计算机网络 算法 频道(广播) 嵌入式系统 农学 数学分析 操作系统 生物 经济 经济增长 数学
作者
Zhida Jiang,Yang Xu,Hongli Xu,Zhiyuan Wang,Jianchun Liu,Qian Chen,Chunming Qiao
出处
期刊:IEEE Transactions on Mobile Computing [Institute of Electrical and Electronics Engineers]
卷期号:23 (3): 2003-2021 被引量:10
标识
DOI:10.1109/tmc.2023.3247798
摘要

Federated learning (FL) has emerged as a promising distributed learning paradigm that enables a large number of mobile devices to cooperatively train a model without sharing their raw data. The iterative training process of FL incurs considerable computation and communication overhead. The workers participating in FL are usually heterogeneous and the workers with poor capabilities may become the bottleneck of model training. To address the challenges of resource overhead and system heterogeneity, this article proposes an efficient FL framework, called FedMP, that improves both computation and communication efficiency over heterogeneous workers through adaptive model pruning. We theoretically analyze the impact of pruning ratio on training performance, and employ a Multi-Armed Bandit based online learning algorithm to adaptively determine different pruning ratios for heterogeneous workers, even without any prior knowledge of their capabilities. As a result, each worker in FedMP can train and transmit the sub-model that fits its own capabilities, accelerating the training process without hurting model accuracy. To prevent the diverse structures of pruned models from affecting the training convergence, we further present a new parameter synchronization scheme, called Residual Recovery Synchronous Parallel (R2SP). Besides, our proposed framework can be extended to the peer-to-peer (P2P) setting. Extensive experiments on physical devices demonstrate that FedMP is effective for different heterogeneous scenarios and data distributions, and can provide up to 4.1× speedup compared to the existing FL methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wwwwpy发布了新的文献求助10
刚刚
倪好完成签到,获得积分10
1秒前
党阳阳完成签到,获得积分10
2秒前
子小孙发布了新的文献求助10
2秒前
ly1完成签到 ,获得积分10
2秒前
3秒前
3秒前
Onism发布了新的文献求助10
3秒前
Yy完成签到,获得积分10
3秒前
浮游应助Harden采纳,获得10
3秒前
范冰冰完成签到,获得积分10
4秒前
coldzer0完成签到,获得积分10
4秒前
黄帅比完成签到,获得积分10
4秒前
4秒前
5秒前
量子星尘发布了新的文献求助10
6秒前
ding应助张兰兰采纳,获得10
6秒前
6秒前
贪玩若剑完成签到,获得积分10
7秒前
子小孙完成签到,获得积分20
7秒前
sss发布了新的文献求助10
7秒前
7秒前
汉堡包应助陈星锦采纳,获得10
7秒前
7秒前
Merryonwine完成签到,获得积分10
7秒前
Jasper应助,,,采纳,获得10
8秒前
MONEY发布了新的文献求助10
8秒前
WHL完成签到,获得积分10
8秒前
干净的烧鹅完成签到,获得积分10
9秒前
过过王完成签到,获得积分10
9秒前
9秒前
李爱国应助积极的天问采纳,获得10
9秒前
11秒前
赘婿应助我要读博士采纳,获得10
12秒前
暗暗搁浅发布了新的文献求助10
12秒前
13秒前
Eine发布了新的文献求助30
13秒前
JamesPei应助lina采纳,获得10
13秒前
好旺完成签到,获得积分10
14秒前
WK发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 921
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Antihistamine substances. XXII; Synthetic antispasmodics. IV. Basic ethers derived from aliphatic carbinols and α-substituted benzyl alcohols 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5430372
求助须知:如何正确求助?哪些是违规求助? 4543585
关于积分的说明 14188041
捐赠科研通 4461764
什么是DOI,文献DOI怎么找? 2446288
邀请新用户注册赠送积分活动 1437689
关于科研通互助平台的介绍 1414458