Computation and Communication Efficient Federated Learning With Adaptive Model Pruning

计算机科学 修剪 加速 瓶颈 架空(工程) 分布式计算 计算 同步(交流) 过程(计算) 趋同(经济学) 方案(数学) 残余物 机器学习 人工智能 计算机工程 并行计算 计算机网络 算法 频道(广播) 嵌入式系统 农学 数学分析 操作系统 生物 经济 经济增长 数学
作者
Zhida Jiang,Yang Xu,Hongli Xu,Zhiyuan Wang,Jianchun Liu,Qian Chen,Chunming Qiao
出处
期刊:IEEE Transactions on Mobile Computing [Institute of Electrical and Electronics Engineers]
卷期号:23 (3): 2003-2021 被引量:53
标识
DOI:10.1109/tmc.2023.3247798
摘要

Federated learning (FL) has emerged as a promising distributed learning paradigm that enables a large number of mobile devices to cooperatively train a model without sharing their raw data. The iterative training process of FL incurs considerable computation and communication overhead. The workers participating in FL are usually heterogeneous and the workers with poor capabilities may become the bottleneck of model training. To address the challenges of resource overhead and system heterogeneity, this article proposes an efficient FL framework, called FedMP, that improves both computation and communication efficiency over heterogeneous workers through adaptive model pruning. We theoretically analyze the impact of pruning ratio on training performance, and employ a Multi-Armed Bandit based online learning algorithm to adaptively determine different pruning ratios for heterogeneous workers, even without any prior knowledge of their capabilities. As a result, each worker in FedMP can train and transmit the sub-model that fits its own capabilities, accelerating the training process without hurting model accuracy. To prevent the diverse structures of pruned models from affecting the training convergence, we further present a new parameter synchronization scheme, called Residual Recovery Synchronous Parallel (R2SP). Besides, our proposed framework can be extended to the peer-to-peer (P2P) setting. Extensive experiments on physical devices demonstrate that FedMP is effective for different heterogeneous scenarios and data distributions, and can provide up to 4.1× speedup compared to the existing FL methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
张云志发布了新的文献求助10
2秒前
abab小王完成签到,获得积分10
2秒前
Cleo应助zbj采纳,获得10
2秒前
2秒前
2秒前
happy发布了新的文献求助10
2秒前
hhhr发布了新的文献求助10
2秒前
3秒前
哈哈发布了新的文献求助10
3秒前
哈哈哈发布了新的文献求助10
3秒前
Aress璇玑完成签到,获得积分10
4秒前
顺顺利利发布了新的文献求助10
4秒前
隐形的破茧完成签到 ,获得积分10
5秒前
elivsZhou发布了新的文献求助10
5秒前
情怀应助Yimi采纳,获得10
5秒前
香蕉诗蕊应助景三采纳,获得10
5秒前
5秒前
5秒前
西番雅完成签到,获得积分20
5秒前
xzy998应助lovekobe采纳,获得10
6秒前
Jared应助lovekobe采纳,获得10
6秒前
6秒前
6秒前
6秒前
HDY完成签到,获得积分10
6秒前
6秒前
7秒前
孙文杰发布了新的文献求助10
7秒前
super发布了新的文献求助10
7秒前
T012完成签到,获得积分10
7秒前
keke完成签到,获得积分10
7秒前
8秒前
科研混子完成签到,获得积分10
8秒前
Pakham完成签到,获得积分10
8秒前
花样年华完成签到,获得积分10
8秒前
8秒前
8秒前
Jared应助marg采纳,获得10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5552171
求助须知:如何正确求助?哪些是违规求助? 4636980
关于积分的说明 14646858
捐赠科研通 4578831
什么是DOI,文献DOI怎么找? 2511146
邀请新用户注册赠送积分活动 1486319
关于科研通互助平台的介绍 1457510