Computation and Communication Efficient Federated Learning With Adaptive Model Pruning

计算机科学 修剪 加速 瓶颈 架空(工程) 分布式计算 计算 同步(交流) 过程(计算) 趋同(经济学) 方案(数学) 残余物 机器学习 人工智能 计算机工程 并行计算 计算机网络 算法 频道(广播) 嵌入式系统 农学 数学分析 操作系统 生物 经济 经济增长 数学
作者
Zhida Jiang,Yang Xu,Hongli Xu,Zhiyuan Wang,Jianchun Liu,Qian Chen,Chunming Qiao
出处
期刊:IEEE Transactions on Mobile Computing [Institute of Electrical and Electronics Engineers]
卷期号:23 (3): 2003-2021 被引量:53
标识
DOI:10.1109/tmc.2023.3247798
摘要

Federated learning (FL) has emerged as a promising distributed learning paradigm that enables a large number of mobile devices to cooperatively train a model without sharing their raw data. The iterative training process of FL incurs considerable computation and communication overhead. The workers participating in FL are usually heterogeneous and the workers with poor capabilities may become the bottleneck of model training. To address the challenges of resource overhead and system heterogeneity, this article proposes an efficient FL framework, called FedMP, that improves both computation and communication efficiency over heterogeneous workers through adaptive model pruning. We theoretically analyze the impact of pruning ratio on training performance, and employ a Multi-Armed Bandit based online learning algorithm to adaptively determine different pruning ratios for heterogeneous workers, even without any prior knowledge of their capabilities. As a result, each worker in FedMP can train and transmit the sub-model that fits its own capabilities, accelerating the training process without hurting model accuracy. To prevent the diverse structures of pruned models from affecting the training convergence, we further present a new parameter synchronization scheme, called Residual Recovery Synchronous Parallel (R2SP). Besides, our proposed framework can be extended to the peer-to-peer (P2P) setting. Extensive experiments on physical devices demonstrate that FedMP is effective for different heterogeneous scenarios and data distributions, and can provide up to 4.1× speedup compared to the existing FL methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
2秒前
4秒前
9℃完成签到 ,获得积分10
5秒前
单纯黑米完成签到 ,获得积分10
5秒前
量子星尘发布了新的文献求助30
6秒前
勤恳洙发布了新的文献求助10
7秒前
祝笑柳完成签到,获得积分10
8秒前
秋qiu完成签到,获得积分10
8秒前
NINI完成签到 ,获得积分10
9秒前
liuzengzhang666完成签到,获得积分10
11秒前
12秒前
小巧的牛排完成签到 ,获得积分10
12秒前
所所应助柚子采纳,获得10
13秒前
13秒前
刘濮源发布了新的文献求助10
13秒前
13秒前
充电宝应助123采纳,获得10
13秒前
lljiaa应助科研通管家采纳,获得10
15秒前
Orange应助科研通管家采纳,获得10
15秒前
ylt应助科研通管家采纳,获得10
15秒前
CodeCraft应助科研通管家采纳,获得30
15秒前
15秒前
15秒前
Maricey应助科研通管家采纳,获得10
15秒前
15秒前
15秒前
所所应助科研通管家采纳,获得10
16秒前
lljiaa应助科研通管家采纳,获得10
16秒前
16秒前
Orange应助科研通管家采纳,获得10
16秒前
ylt应助科研通管家采纳,获得10
16秒前
16秒前
Lny应助科研通管家采纳,获得10
16秒前
CodeCraft应助科研通管家采纳,获得30
16秒前
Maricey应助科研通管家采纳,获得10
16秒前
所所应助科研通管家采纳,获得10
16秒前
Lny应助科研通管家采纳,获得10
16秒前
李明应助科研通管家采纳,获得10
16秒前
Novoa应助科研通管家采纳,获得10
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742197
求助须知:如何正确求助?哪些是违规求助? 5407018
关于积分的说明 15344388
捐赠科研通 4883635
什么是DOI,文献DOI怎么找? 2625185
邀请新用户注册赠送积分活动 1574043
关于科研通互助平台的介绍 1530978