Knowledge-Adaptive Contrastive Learning for Recommendation

信息过载 计算机科学 推荐系统 编码 图形 机器学习 任务(项目管理) 知识图 人工智能 理论计算机科学 万维网 生物化学 化学 管理 经济 基因
作者
Hao Wang,Yao Xu,Cheng Yang,Chuan Shi,Xin Li,Ning Guo,Zhiyuan Liu
标识
DOI:10.1145/3539597.3570483
摘要

By jointly modeling user-item interactions and knowledge graph (KG) information, KG-based recommender systems have shown their superiority in alleviating data sparsity and cold start problems. Recently, graph neural networks (GNNs) have been widely used in KG-based recommendation, owing to the strong ability of capturing high-order structural information. However, we argue that existing GNN-based methods have the following two limitations. Interaction domination: the supervision signal of user-item interaction will dominate the model training, and thus the information of KG is barely encoded in learned item representations; Knowledge overload: KG contains much recommendation-irrelevant information, and such noise would be enlarged during the message aggregation of GNNs. The above limitations prevent existing methods to fully utilize the valuable information lying in KG. In this paper, we propose a novel algorithm named Knowledge-Adaptive Contrastive Learning (KACL) to address these challenges. Specifically, we first generate data augmentations from user-item interaction view and KG view separately, and perform contrastive learning across the two views. Our design of contrastive loss will force the item representations to encode information shared by both views, thereby alleviating the interaction domination issue. Moreover, we introduce two learnable view generators to adaptively remove task-irrelevant edges during data augmentation, and help tolerate the noises brought by knowledge overload. Experimental results on three public benchmarks demonstrate that KACL can significantly improve the performance on top-K recommendation compared with state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烟花应助月明风清采纳,获得10
刚刚
桐桐应助不甜的唐采纳,获得20
2秒前
2秒前
动次打次完成签到,获得积分0
4秒前
5秒前
7秒前
健康发布了新的文献求助10
8秒前
9秒前
Owen应助mm采纳,获得10
10秒前
11秒前
达到完成签到,获得积分10
12秒前
ww发布了新的文献求助10
12秒前
12秒前
14秒前
14秒前
研友_Z3NGvn发布了新的文献求助10
15秒前
18秒前
1252发布了新的文献求助10
18秒前
JamesPei应助alexzlmmd采纳,获得30
19秒前
123发布了新的文献求助10
19秒前
喵xiii发布了新的文献求助10
20秒前
21秒前
月明风清发布了新的文献求助10
23秒前
科研通AI2S应助研友_Z3NGvn采纳,获得10
23秒前
王大壮完成签到,获得积分10
23秒前
爆米花应助猪儿虫采纳,获得10
26秒前
27秒前
qkdwwz发布了新的文献求助10
29秒前
1252完成签到,获得积分20
29秒前
安详雅香完成签到,获得积分10
29秒前
30秒前
han发布了新的文献求助10
33秒前
研友_8DANkL发布了新的文献求助10
33秒前
35秒前
酷波er应助1252采纳,获得10
36秒前
善良白翠发布了新的文献求助20
38秒前
cttc完成签到,获得积分10
39秒前
huihui完成签到 ,获得积分10
39秒前
39秒前
40秒前
高分求助中
Востребованный временем 2500
Production Logging: Theoretical and Interpretive Elements 2000
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1500
Kidney Transplantation: Principles and Practice 1000
The Restraining Hand: Captivity for Christ in China 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Encyclopedia of Mental Health Reference Work 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3371145
求助须知:如何正确求助?哪些是违规求助? 2989357
关于积分的说明 8735444
捐赠科研通 2672522
什么是DOI,文献DOI怎么找? 1464046
科研通“疑难数据库(出版商)”最低求助积分说明 677394
邀请新用户注册赠送积分活动 668660