亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Impact of different backsheets and encapsulant types on potential induced degradation (PID) of silicon PV modules

PID控制器 材料科学 下降(电信) 光伏系统 电导率 复合材料 计算机科学 温度控制 电气工程 机械工程 化学 工程类 电信 物理化学
作者
Farrukh ibne Mahmood,GovindaSamy TamizhMani
出处
期刊:Solar Energy [Elsevier]
卷期号:252: 20-28 被引量:24
标识
DOI:10.1016/j.solener.2023.01.047
摘要

Photovoltaic (PV) modules during field exposure are subject to many durability and reliability issues, such as potential induced degradation (PID). The shunting type PID (PID-s) can significantly affect module performance. Most of the current studies on PID-s focus on understanding its mechanisms and mitigating its effects by modifying the glass, cell, or encapsulant component. Since the backsheet type influences the water vapor transmission rate, the conductivity of the encapsulant is significantly influenced by the backsheet type, and hence the level of voltage drop in the encapsulant layer during the PID stress test. The higher the conductivity of the encapsulant, the lower the voltage drop in the encapsulant and the worse the PID. Therefore, in the current work, the influence of four different backsheet types (PVF, PVDF, PA, ECTFE) and two different encapsulant types (EVA and POE) on PID is investigated. With multiple construction combinations of these materials, a set of 1-cell modules were fabricated and stressed for PID using an environmental chamber at −1000 V and 85 °C/85 %RH for 288 h. The performance and defect level changes were obtained using several pre- and post-stress characterizations, including IV and EL. The results indicate a power degradation in the range between 0 % and 9 %, depending on the backsheet-encapsulant combination. The results of this study are pertinent to understanding the influence of substrate relative to PID in PV modules. Moreover, these results can also help the manufacturers to select the best backsheet-encapsulant combination to minimize the persisting PID issues in the field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无辜的黄豆完成签到 ,获得积分10
1秒前
吾系渣渣辉完成签到 ,获得积分10
4秒前
4秒前
123发布了新的文献求助10
5秒前
微醺潮汐完成签到,获得积分10
7秒前
mmyhn应助科研通管家采纳,获得20
10秒前
andrele应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
所所应助FanKun采纳,获得10
10秒前
Li发布了新的文献求助10
13秒前
123完成签到,获得积分10
14秒前
17秒前
上官若男应助殷琛采纳,获得10
20秒前
奥利奥完成签到 ,获得积分10
21秒前
srx完成签到 ,获得积分10
22秒前
禅依完成签到,获得积分10
23秒前
FanKun发布了新的文献求助10
23秒前
虾球发布了新的文献求助10
25秒前
27秒前
赘婿应助禅依采纳,获得10
27秒前
我不到啊完成签到 ,获得积分10
28秒前
彭于晏应助VERITAS采纳,获得10
30秒前
tomato发布了新的文献求助10
34秒前
35秒前
inRe发布了新的文献求助10
36秒前
38秒前
殷琛发布了新的文献求助10
40秒前
zz发布了新的文献求助10
44秒前
47秒前
48秒前
传奇3应助殷琛采纳,获得10
48秒前
49秒前
秦小狸完成签到 ,获得积分10
50秒前
VERITAS发布了新的文献求助10
52秒前
土豪的摩托完成签到 ,获得积分10
52秒前
54秒前
yezio完成签到 ,获得积分10
55秒前
怕黑鲂完成签到 ,获得积分10
57秒前
58秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5627829
求助须知:如何正确求助?哪些是违规求助? 4714854
关于积分的说明 14963247
捐赠科研通 4785572
什么是DOI,文献DOI怎么找? 2555178
邀请新用户注册赠送积分活动 1516526
关于科研通互助平台的介绍 1476936