已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Inference and dynamic decision-making for deteriorating systems with probabilistic dependencies through Bayesian networks and deep reinforcement learning

强化学习 计算机科学 概率逻辑 马尔可夫决策过程 贝叶斯网络 背景(考古学) 动态贝叶斯网络 推论 启发式 人工智能 数学优化 贝叶斯推理 贝叶斯概率 机器学习 马尔可夫过程 数学 古生物学 统计 生物
作者
Pablo G. Morato,C. P. Andriotis,Κωνσταντίνος Παπακωνσταντίνου,Philippe Rigo
出处
期刊:Reliability Engineering & System Safety [Elsevier BV]
卷期号:235: 109144-109144 被引量:5
标识
DOI:10.1016/j.ress.2023.109144
摘要

In the context of modern environmental and societal concerns, there is an increasing demand for methods able to identify management strategies for civil engineering systems, minimizing structural failure risks while optimally planning inspection and maintenance (I&M) processes. Most available methods simplify the I&M decision problem to the component level due to the computational complexity associated with global optimization methodologies under joint system-level state descriptions. In this paper, we propose an efficient algorithmic framework for inference and decision-making under uncertainty for engineering systems exposed to deteriorating environments, providing optimal management strategies directly at the system level. In our approach, the decision problem is formulated as a factored partially observable Markov decision process, whose dynamics are encoded in Bayesian network conditional structures. The methodology can handle environments under equal or general, unequal deterioration correlations among components, through Gaussian hierarchical structures and dynamic Bayesian networks. In terms of policy optimization, we adopt a deep decentralized multi-agent actor-critic (DDMAC) reinforcement learning approach, in which the policies are approximated by actor neural networks guided by a critic network. By including deterioration dependence in the simulated environment, and by formulating the cost model at the system level, DDMAC policies intrinsically consider the underlying system-effects. This is demonstrated through numerical experiments conducted for both a 9-out-of-10 system and a steel frame under fatigue deterioration. Results demonstrate that DDMAC policies offer substantial benefits when compared to state-of-the-art heuristic approaches. The inherent consideration of system-effects by DDMAC strategies is also interpreted based on the learned policies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
DD立芬完成签到 ,获得积分10
1秒前
3秒前
王佳怡完成签到 ,获得积分10
4秒前
exosome完成签到,获得积分10
8秒前
热情的寄瑶完成签到 ,获得积分10
9秒前
开心牛油果完成签到,获得积分10
14秒前
尾状叶完成签到 ,获得积分10
15秒前
桐桐应助study666采纳,获得10
15秒前
C9完成签到 ,获得积分10
16秒前
小蘑菇应助sk4ajd采纳,获得10
16秒前
18秒前
旺仔先生完成签到 ,获得积分10
22秒前
24秒前
L_MD完成签到,获得积分10
24秒前
赘婿应助开心牛油果采纳,获得10
24秒前
青糯完成签到 ,获得积分10
25秒前
26秒前
27秒前
automan完成签到,获得积分10
29秒前
30秒前
sk4ajd发布了新的文献求助10
31秒前
wenhao完成签到 ,获得积分10
33秒前
猪猪侠发布了新的文献求助10
33秒前
study666发布了新的文献求助10
34秒前
xiaoshuwang完成签到,获得积分10
36秒前
CipherSage应助aabbfz采纳,获得10
37秒前
43秒前
天真安完成签到 ,获得积分10
47秒前
aabbfz发布了新的文献求助10
47秒前
51秒前
HeLL0完成签到 ,获得积分10
53秒前
欣喜石头完成签到 ,获得积分10
54秒前
酷波er应助急雪回风采纳,获得10
57秒前
松子儿hhh完成签到,获得积分10
1分钟前
1分钟前
吴嘉俊完成签到 ,获得积分10
1分钟前
万能的悲剧完成签到 ,获得积分10
1分钟前
仁爱的凡波完成签到,获得积分10
1分钟前
Charlie完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968199
求助须知:如何正确求助?哪些是违规求助? 3513215
关于积分的说明 11166782
捐赠科研通 3248448
什么是DOI,文献DOI怎么找? 1794246
邀请新用户注册赠送积分活动 874950
科研通“疑难数据库(出版商)”最低求助积分说明 804629