已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Inference and dynamic decision-making for deteriorating systems with probabilistic dependencies through Bayesian networks and deep reinforcement learning

强化学习 计算机科学 概率逻辑 马尔可夫决策过程 贝叶斯网络 背景(考古学) 动态贝叶斯网络 推论 启发式 人工智能 数学优化 贝叶斯推理 贝叶斯概率 机器学习 马尔可夫过程 数学 古生物学 统计 生物
作者
Pablo G. Morato,C. P. Andriotis,Κωνσταντίνος Παπακωνσταντίνου,Philippe Rigo
出处
期刊:Reliability Engineering & System Safety [Elsevier BV]
卷期号:235: 109144-109144 被引量:5
标识
DOI:10.1016/j.ress.2023.109144
摘要

In the context of modern environmental and societal concerns, there is an increasing demand for methods able to identify management strategies for civil engineering systems, minimizing structural failure risks while optimally planning inspection and maintenance (I&M) processes. Most available methods simplify the I&M decision problem to the component level due to the computational complexity associated with global optimization methodologies under joint system-level state descriptions. In this paper, we propose an efficient algorithmic framework for inference and decision-making under uncertainty for engineering systems exposed to deteriorating environments, providing optimal management strategies directly at the system level. In our approach, the decision problem is formulated as a factored partially observable Markov decision process, whose dynamics are encoded in Bayesian network conditional structures. The methodology can handle environments under equal or general, unequal deterioration correlations among components, through Gaussian hierarchical structures and dynamic Bayesian networks. In terms of policy optimization, we adopt a deep decentralized multi-agent actor-critic (DDMAC) reinforcement learning approach, in which the policies are approximated by actor neural networks guided by a critic network. By including deterioration dependence in the simulated environment, and by formulating the cost model at the system level, DDMAC policies intrinsically consider the underlying system-effects. This is demonstrated through numerical experiments conducted for both a 9-out-of-10 system and a steel frame under fatigue deterioration. Results demonstrate that DDMAC policies offer substantial benefits when compared to state-of-the-art heuristic approaches. The inherent consideration of system-effects by DDMAC strategies is also interpreted based on the learned policies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
8秒前
微微完成签到 ,获得积分10
11秒前
Ava应助icarus采纳,获得10
13秒前
章章发布了新的文献求助10
13秒前
科研通AI5应助打个大西瓜采纳,获得10
14秒前
FashionBoy应助结实擎苍采纳,获得10
22秒前
22秒前
25秒前
28秒前
rr123456完成签到 ,获得积分10
29秒前
打打应助昭华昭华采纳,获得10
33秒前
任性冰凡完成签到 ,获得积分10
34秒前
感谢你的帮助完成签到,获得积分10
34秒前
34秒前
QOP应助土豆采纳,获得10
36秒前
汉堡包应助Justin采纳,获得10
37秒前
39秒前
YF_W完成签到,获得积分10
41秒前
111完成签到,获得积分10
43秒前
天真的不凡完成签到 ,获得积分10
43秒前
WSYang完成签到,获得积分10
45秒前
46秒前
Jasper应助aaa采纳,获得10
48秒前
Jason发布了新的文献求助10
51秒前
上官若男应助双木采纳,获得30
56秒前
56秒前
58秒前
58秒前
aaa发布了新的文献求助10
1分钟前
开心的幼珊完成签到 ,获得积分10
1分钟前
Nnu完成签到 ,获得积分10
1分钟前
1分钟前
周妍完成签到,获得积分20
1分钟前
xzy998应助七十七asdmn采纳,获得10
1分钟前
双木发布了新的文献求助30
1分钟前
乐观之瑶发布了新的文献求助10
1分钟前
1分钟前
Jasen发布了新的文献求助10
1分钟前
YF_W发布了新的文献求助10
1分钟前
从容芮应助科研通管家采纳,获得30
1分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Ciprofol versus propofol for adult sedation in gastrointestinal endoscopic procedures: a systematic review and meta-analysis 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3671080
求助须知:如何正确求助?哪些是违规求助? 3228002
关于积分的说明 9777848
捐赠科研通 2938195
什么是DOI,文献DOI怎么找? 1609777
邀请新用户注册赠送积分活动 760457
科研通“疑难数据库(出版商)”最低求助积分说明 735962