Neighborhood Correlation Enhancement Network for PCB Defect Classification

残余物 相关性(法律) 模式识别(心理学) 块(置换群论) 卷积(计算机科学) 人工智能 计算机科学 印刷电路板 网(多面体) 鉴定(生物学) 数据挖掘 机器学习 算法 数学 人工神经网络 操作系统 生物 植物 政治学 法学 几何学
作者
Wenkai Huang,Jiafu Wen,Weiming Gan,Lingkai Hu,Bingjun Luo
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-11 被引量:5
标识
DOI:10.1109/tim.2023.3243670
摘要

In recent years, deep-learning has been gradually applied to the detection and classification of true and pseudo defects in printed circuit boards (PCBs). To judge the authenticity of PCB defects, it is necessary not only to combine the shape characteristics of the defects themselves, but also to add the relationship information between the surrounding environment and defects. However, it is difficult for general classification methods to extract such features. In this article, we propose the neighborhood correlation enhancement network (NCE-Net), which effectively uses defect and surrounding relationship information to accurately distinguish defect authenticity. This network has a relevance residual block (RRB), which is used to establish the correlation between defects and their surroundings, including the location enhancement and locate (LEL) module and relevance convolution (RC), which are respectively used to enhance the effective geographical information and extract the relationship between features of different positions. It also utilizes a small squeeze residual block (SRB) to classify pseudo defects more quickly and efficiently in industrial applications. In addition, to achieve the lowest pseudo-defect detection error rate, we created a unique multi-network specific integration (SI) method for use with NCE-Net. The experimental results show that our proposed network can be trained on a PCB defect classification dataset (PCB-2-DET) for higher efficiency and more significant PCB defect detection. Additionally, the model’s identification accuracy can be further improved through our unique SI method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
momo完成签到,获得积分10
1秒前
2秒前
芥蓝蓝精灵完成签到,获得积分20
2秒前
2秒前
伶俐的铁身完成签到,获得积分10
2秒前
3秒前
zzz完成签到,获得积分10
3秒前
wusanlinshi发布了新的文献求助90
3秒前
levoglucosan发布了新的文献求助10
4秒前
1+1应助贝儿采纳,获得10
4秒前
diode完成签到,获得积分10
4秒前
4秒前
稳重诗珊完成签到,获得积分20
4秒前
Leisle发布了新的文献求助10
4秒前
5秒前
科研通AI5应助舒克采纳,获得10
5秒前
5秒前
ixueyi发布了新的文献求助10
5秒前
科研通AI5应助袁rrrr采纳,获得10
5秒前
5秒前
阿里巴巴完成签到 ,获得积分10
5秒前
Ava应助wxy采纳,获得10
6秒前
LIXI发布了新的文献求助10
6秒前
慕青应助美丽迎梦采纳,获得10
6秒前
6秒前
廖匪发布了新的文献求助10
6秒前
Michael发布了新的文献求助10
7秒前
todayisirene发布了新的文献求助10
7秒前
8秒前
9秒前
隐形曼青应助谦让的西装采纳,获得10
10秒前
10秒前
10秒前
11秒前
hhp发布了新的文献求助10
11秒前
lailai发布了新的文献求助10
11秒前
11秒前
HAFun完成签到,获得积分10
12秒前
lxy发布了新的文献求助10
12秒前
香蕉觅云应助科研通管家采纳,获得10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Starvation biology of Plutella xylostella from a post-harvest crop sanitation perspective 250
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
Essays on Employer Engagement in Education 210
University-Industry Collaboration and the Success Mechanism of Collaboration 210
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3690641
求助须知:如何正确求助?哪些是违规求助? 3240758
关于积分的说明 9839771
捐赠科研通 2952511
什么是DOI,文献DOI怎么找? 1618753
邀请新用户注册赠送积分活动 765398
科研通“疑难数据库(出版商)”最低求助积分说明 739241