Fast Sparse Discriminative K-Means for Unsupervised Feature Selection

特征选择 判别式 计算机科学 模式识别(心理学) 基质(化学分析) 人工智能 符号 选择(遗传算法) 约束(计算机辅助设计) 规范(哲学) 数学 算术 政治学 复合材料 材料科学 法学 几何学
作者
Feiping Nie,Zhenyu Ma,Jingyu Wang,Xuelong Li
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (7): 9943-9957 被引量:23
标识
DOI:10.1109/tnnls.2023.3238103
摘要

Embedded feature selection approach guides subsequent projection matrix (selection matrix) learning through the acquisition of pseudolabel matrix to conduct feature selection tasks. Yet the continuous pseudolabel matrix learned from relaxed problem based on spectral analysis deviates from reality to some extent. To cope with this issue, we design an efficient feature selection framework inspired by classical least-squares regression (LSR) and discriminative K-means (DisK-means), which is called the fast sparse discriminative K-means (FSDK) for the feature selection method. First, the weighted pseudolabel matrix with discrete trait is introduced to avoid trivial solution from unsupervised LSR. On this condition, any constraint imposed into pseudolabel matrix and selection matrix is dispensable, which is significantly beneficial to simplify the combinational optimization problem. Second, the $\ell_{2,p}$ -norm regularizer is introduced to satisfy the row sparsity of selection matrix with flexible $p$ . Consequently, the proposed FSDK model can be treated as a novel feature selection framework integrated from the DisK-means algorithm and $\ell_{2,p}$ -norm regularizer to optimize the sparse regression problem. Moreover, our model is linearly correlated with the number of samples, which is speedy to handle the large-scale data. Comprehensive tests on various data terminally illuminate the effectiveness and efficiency of FSDK.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
苏苏完成签到,获得积分10
刚刚
田様应助颖w采纳,获得10
1秒前
韩小寒qqq完成签到,获得积分10
1秒前
徐笑松发布了新的文献求助10
2秒前
2秒前
糖丸完成签到,获得积分10
2秒前
田様应助章宇采纳,获得10
2秒前
Fayth完成签到,获得积分10
3秒前
3秒前
太空人发布了新的文献求助10
4秒前
瑶瑶公主发布了新的文献求助10
4秒前
4秒前
4秒前
5秒前
超级的煎饼完成签到,获得积分10
5秒前
Owen应助carly采纳,获得10
5秒前
爆米花应助轻松的凡英采纳,获得10
6秒前
6秒前
谣谣发布了新的文献求助10
6秒前
6秒前
ZYQ发布了新的文献求助10
6秒前
十八鱼应助aa121599采纳,获得10
7秒前
爆米花应助甜崽小肉丸采纳,获得10
7秒前
7秒前
善学以致用应助yihuifa采纳,获得10
7秒前
aff发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
wengjc92发布了新的文献求助20
8秒前
8秒前
9秒前
Lxx完成签到 ,获得积分10
9秒前
bhfhq完成签到,获得积分10
10秒前
小荣儿完成签到,获得积分10
10秒前
10秒前
11秒前
cici发布了新的文献求助10
11秒前
秋千发布了新的文献求助10
11秒前
Tao发布了新的文献求助10
11秒前
猪猪hero应助zzzzz采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Practical Methods for Aircraft and Rotorcraft Flight Control Design: An Optimization-Based Approach 1000
List of 1,091 Public Pension Profiles by Region 831
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Carbon black : production, properties, and applications. Ch. 4 in Marsh H 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5414656
求助须知:如何正确求助?哪些是违规求助? 4531611
关于积分的说明 14129070
捐赠科研通 4447008
什么是DOI,文献DOI怎么找? 2439586
邀请新用户注册赠送积分活动 1431639
关于科研通互助平台的介绍 1409294