亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Road Topology Extraction From Satellite Imagery by Joint Learning of Nodes and Their Connectivity

符号 计算机科学 算法 网络拓扑 人工智能 图形 数学 拓扑(电路) 理论计算机科学 组合数学 算术 操作系统
作者
Jinming Zhang,Xiangyun Hu,Yujun Wei,Lili Zhang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-13 被引量:8
标识
DOI:10.1109/tgrs.2023.3241679
摘要

Road topology extraction from satellite images, which has long been of interest, is an essential task in remote sensing. The graph representation of road networks is one of the most challenging aspects of road topology extraction. Most existing approaches cast road extraction as binary segmentation and then use postprocessing, such as skeletonization, to infer networks from pixelwise prediction. In our work, we believe that a road network can be represented by an undirected graph denoted as $G =$ ( $V$ , $E$ ), where $V$ and $E$ represent the set of road nodes and the set of edges between nodes, respectively. Thus, to construct the road topology, we propose NodeConnect, a new method of extracting nodes for a road network and inferring the connectivity between nodes. A convolutional neural network is jointly trained to predict the nodes and connectivity map for nodes, and the edges between nodes are inferred from the connectivity map. We compare our approach with several segmentation methods on the DeepGlobe and RoadTracer datasets. The experiments show that our approach achieves state-of-the-art performance in terms of pixel-based metrics and topological precision and recall.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
没见云发布了新的文献求助10
8秒前
9秒前
13秒前
16秒前
秦时明月发布了新的文献求助10
19秒前
21秒前
25秒前
请输入昵称完成签到 ,获得积分10
27秒前
Jeongin发布了新的文献求助10
30秒前
31秒前
Freedom完成签到 ,获得积分10
36秒前
xiaobizaizhi233完成签到,获得积分10
39秒前
可乐完成签到 ,获得积分10
41秒前
41秒前
Jeongin完成签到,获得积分10
41秒前
量子星尘发布了新的文献求助10
49秒前
科目三应助OYJH采纳,获得10
59秒前
科研兵完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
英俊的铭应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
NexusExplorer应助科研通管家采纳,获得10
1分钟前
科研通AI6.1应助Okanryo采纳,获得10
1分钟前
sulin完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
如意秋珊完成签到 ,获得积分10
1分钟前
秦时明月发布了新的文献求助10
1分钟前
丁一发布了新的文献求助10
1分钟前
1分钟前
1分钟前
孙泉发布了新的文献求助10
1分钟前
pegasus0802完成签到,获得积分10
2分钟前
Gryphon完成签到,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5755160
求助须知:如何正确求助?哪些是违规求助? 5491833
关于积分的说明 15380956
捐赠科研通 4893420
什么是DOI,文献DOI怎么找? 2632044
邀请新用户注册赠送积分活动 1579872
关于科研通互助平台的介绍 1535729