Road Topology Extraction From Satellite Imagery by Joint Learning of Nodes and Their Connectivity

符号 计算机科学 算法 网络拓扑 人工智能 图形 数学 拓扑(电路) 理论计算机科学 组合数学 算术 操作系统
作者
Jinming Zhang,Xiangyun Hu,Yujun Wei,Lili Zhang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-13 被引量:8
标识
DOI:10.1109/tgrs.2023.3241679
摘要

Road topology extraction from satellite images, which has long been of interest, is an essential task in remote sensing. The graph representation of road networks is one of the most challenging aspects of road topology extraction. Most existing approaches cast road extraction as binary segmentation and then use postprocessing, such as skeletonization, to infer networks from pixelwise prediction. In our work, we believe that a road network can be represented by an undirected graph denoted as $G =$ ( $V$ , $E$ ), where $V$ and $E$ represent the set of road nodes and the set of edges between nodes, respectively. Thus, to construct the road topology, we propose NodeConnect, a new method of extracting nodes for a road network and inferring the connectivity between nodes. A convolutional neural network is jointly trained to predict the nodes and connectivity map for nodes, and the edges between nodes are inferred from the connectivity map. We compare our approach with several segmentation methods on the DeepGlobe and RoadTracer datasets. The experiments show that our approach achieves state-of-the-art performance in terms of pixel-based metrics and topological precision and recall.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
leo发布了新的文献求助30
1秒前
小蘑菇应助城北徐公采纳,获得10
1秒前
FashionBoy应助称心乐枫采纳,获得10
1秒前
1秒前
2秒前
幽默的乘风完成签到,获得积分0
4秒前
4秒前
咕噜咕噜发布了新的文献求助10
4秒前
三日宝发布了新的文献求助10
5秒前
脑洞疼应助SMU小刘~采纳,获得10
7秒前
limy完成签到 ,获得积分20
7秒前
ezio完成签到,获得积分10
7秒前
7秒前
热心肠发布了新的文献求助10
8秒前
郭耀锐发布了新的文献求助10
8秒前
zzzz完成签到,获得积分10
8秒前
幸福大白发布了新的文献求助10
9秒前
FashionBoy应助wawa采纳,获得10
9秒前
老实新筠完成签到,获得积分10
9秒前
明亮以山完成签到,获得积分10
10秒前
11秒前
LZQ发布了新的文献求助10
11秒前
Chunxue完成签到,获得积分10
12秒前
12秒前
14秒前
14秒前
14秒前
对映体完成签到,获得积分10
16秒前
韦智杰发布了新的文献求助10
16秒前
17秒前
iNk应助汕头凯奇采纳,获得10
17秒前
fruoxi发布了新的文献求助10
17秒前
幸福大白发布了新的文献求助10
17秒前
vincentbioinfo完成签到,获得积分10
18秒前
SciGPT应助清蒸鱼采纳,获得10
18秒前
zz完成签到,获得积分10
18秒前
19秒前
19秒前
19秒前
英俊白莲发布了新的文献求助30
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4547101
求助须知:如何正确求助?哪些是违规求助? 3978164
关于积分的说明 12318204
捐赠科研通 3646677
什么是DOI,文献DOI怎么找? 2008295
邀请新用户注册赠送积分活动 1043874
科研通“疑难数据库(出版商)”最低求助积分说明 932515