A Systematic Analysis of Scan Matching Techniques for Machinery Localization in Dense Orchards

匹配(统计) 计算机科学 人工智能 统计 数学
作者
Dario Javier Guevara,Jordi Gene Mola,Eduard Gregorio,Fernando Auat Cheein
出处
期刊:Social Science Research Network [Social Science Electronic Publishing]
标识
DOI:10.2139/ssrn.4329491
摘要

In the last years, different methods have been studied for determining machinery position within a grove, as an alternative for complementing GNSS (global navigation satellite system) information in cases where GNSS signal is occluded. Such situation can be observed when agricultural machinery travels under dense foliage or at the slopes of mountains. Scan matching techniques arise as a possible solution for localizing the machinery, complementing the absence of the GNSS signal when necessary. However, since key points are difficult to obtain in heterogeneous, unstructured and non-rigid environments (such as orchard plants), the performance of scan matching techniques often decreases in agricultural environments. This work proposes a methodology to enhance the performance of scan matching techniques in agricultural orchards by splitting the point clouds into different horizontal and vertical segments, along with an analysis of the optimum overlap between registered frames. We validate the analysis with an extensive experimentation in a Fuji apple orchard. The results show that the cumulative localization error in scan matching techniques can be notoriously decreased with selective parts of the orchard. The experimentation performed herein suggests that the proposed methodology can complement the GNSS navigation in a middle-long path.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1234发布了新的文献求助10
刚刚
归tu发布了新的文献求助10
1秒前
jevon应助BonnieO采纳,获得10
1秒前
chai完成签到,获得积分10
1秒前
科研通AI2S应助狗蛋采纳,获得10
4秒前
张润泽完成签到 ,获得积分10
4秒前
5秒前
PU发布了新的文献求助10
5秒前
june完成签到,获得积分10
6秒前
甜甜圈完成签到,获得积分10
7秒前
科研通AI2S应助皮小盒采纳,获得10
7秒前
苏小狸发布了新的文献求助10
8秒前
小飞飞发布了新的文献求助10
8秒前
赘婿应助背后菠萝采纳,获得30
8秒前
1234完成签到,获得积分20
8秒前
Fiona03完成签到 ,获得积分10
9秒前
超帅的薇姐完成签到 ,获得积分10
9秒前
ardejiang发布了新的文献求助10
11秒前
FashionBoy应助鲸鱼吻着浪采纳,获得10
11秒前
大模型应助对对对采纳,获得10
11秒前
归tu完成签到,获得积分20
12秒前
大大怪发布了新的文献求助10
12秒前
Jasper应助欧欧采纳,获得10
12秒前
粗犷的灵松完成签到,获得积分10
13秒前
吴吴完成签到,获得积分20
13秒前
14秒前
甜橙完成签到 ,获得积分10
14秒前
丘比特应助BonnieO采纳,获得10
14秒前
LUCKYZHU完成签到,获得积分20
17秒前
17秒前
18秒前
雨小月完成签到,获得积分20
19秒前
上官若男应助乐观的雅青采纳,获得10
19秒前
现代豪完成签到,获得积分10
20秒前
傲慢与偏见zz应助狗蛋采纳,获得10
20秒前
X7完成签到,获得积分10
22秒前
宋宋发布了新的文献求助10
22秒前
CSUST科研一哥应助大先生采纳,获得10
22秒前
汉堡包应助将将采纳,获得10
23秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 600
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3234201
求助须知:如何正确求助?哪些是违规求助? 2880628
关于积分的说明 8216151
捐赠科研通 2548179
什么是DOI,文献DOI怎么找? 1377602
科研通“疑难数据库(出版商)”最低求助积分说明 647925
邀请新用户注册赠送积分活动 623302