A Systematic Analysis of Scan Matching Techniques for Machinery Localization in Dense Orchards

匹配(统计) 计算机科学 人工智能 统计 数学
作者
Dario Javier Guevara,Jordi Gene Mola,Eduard Gregorio,Fernando Auat Cheein
出处
期刊:Social Science Research Network [Social Science Electronic Publishing]
标识
DOI:10.2139/ssrn.4329491
摘要

In the last years, different methods have been studied for determining machinery position within a grove, as an alternative for complementing GNSS (global navigation satellite system) information in cases where GNSS signal is occluded. Such situation can be observed when agricultural machinery travels under dense foliage or at the slopes of mountains. Scan matching techniques arise as a possible solution for localizing the machinery, complementing the absence of the GNSS signal when necessary. However, since key points are difficult to obtain in heterogeneous, unstructured and non-rigid environments (such as orchard plants), the performance of scan matching techniques often decreases in agricultural environments. This work proposes a methodology to enhance the performance of scan matching techniques in agricultural orchards by splitting the point clouds into different horizontal and vertical segments, along with an analysis of the optimum overlap between registered frames. We validate the analysis with an extensive experimentation in a Fuji apple orchard. The results show that the cumulative localization error in scan matching techniques can be notoriously decreased with selective parts of the orchard. The experimentation performed herein suggests that the proposed methodology can complement the GNSS navigation in a middle-long path.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
虚拟的凡波完成签到,获得积分10
2秒前
gu发布了新的文献求助10
2秒前
卜之玉完成签到 ,获得积分10
2秒前
懵懂的念云给无呜呜的求助进行了留言
3秒前
5秒前
5秒前
科研通AI6应助茶博士采纳,获得10
6秒前
FnDs完成签到,获得积分10
7秒前
震动的听安完成签到,获得积分10
7秒前
7秒前
小方发布了新的文献求助10
8秒前
9秒前
李春祥完成签到,获得积分20
9秒前
OK完成签到,获得积分10
10秒前
10秒前
10秒前
12秒前
酷酷书包发布了新的文献求助30
14秒前
15秒前
靓丽的胜完成签到,获得积分10
15秒前
小方完成签到,获得积分10
16秒前
Hello应助欢喜藏今采纳,获得10
16秒前
tianzml0应助maogu采纳,获得30
17秒前
18秒前
李爱国应助默默采纳,获得10
18秒前
圈圈完成签到,获得积分20
18秒前
19秒前
19秒前
脑洞疼应助心灵美的翠芙采纳,获得10
22秒前
JamesPei应助阔达的岱周采纳,获得10
22秒前
23秒前
happyboy2008完成签到,获得积分10
23秒前
草莓发布了新的文献求助30
23秒前
yu202408应助lslslslsllss采纳,获得20
24秒前
25秒前
28秒前
王诗琪完成签到,获得积分10
28秒前
旧人旧街完成签到,获得积分10
30秒前
30秒前
李逸玄完成签到,获得积分10
31秒前
高分求助中
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5380022
求助须知:如何正确求助?哪些是违规求助? 4504117
关于积分的说明 14017318
捐赠科研通 4412917
什么是DOI,文献DOI怎么找? 2423987
邀请新用户注册赠送积分活动 1416862
关于科研通互助平台的介绍 1394558