Spatial and temporal dynamics of cropland in the Sanjiang Plain from 2014 to 2020 based on annual 30 m crop data layers

三江平原 环境科学 农业 种植 作物 土地覆盖 粮食安全 自然地理学 土地利用 地理 生态学 林业 生物 沼泽 湿地 考古
作者
Cui Jin,Zeyu Zhang,Hongyan Cai,Ge Cao,Xintao Li,Xueming Li
出处
期刊:The Journal of Agricultural Science [Cambridge University Press]
卷期号:161 (2): 175-186
标识
DOI:10.1017/s002185962300014x
摘要

Abstract The land cover of the Sanjiang Plain has changed dramatically since the 1950s. Although previous studies have analysed its spatiotemporal dynamics at long time intervals, a near real-time and accurate representation of the interannual evolution of cropping patterns in this region is of far-reaching importance for rationally allocating agricultural resources and ensuring food security. Based on the 30 m and 10 m land cover datasets in 2015 and 2017–2019, the current study used Landsat-8 satellite data in 2014, 2016 and 2020 to identify paddy rice and dryland crops using a decision tree classification approach and constructed the annual cropland datasets of the Sanjiang Plain from 2014 to 2020. The results show that the overall classification accuracies of crop datasets exceeded 95%, and the Kappa coefficients were higher than 0.92. The average annual accuracies of users and producers were 93% and 94% for rice fields and 97% and 95% for dryland crops, respectively. During the 7 years, the total area of paddy fields and dryland crops decreased by 5% and 8%. However, with minor positive and negative variation between years. 24.2% of paddy rice and 42% of dryland crops has been cultivated under 4 years. The centres of gravity for both crops mainly aggregated in the central counties with the migration direction and magnitude varying interannually. The current study emphasizes the importance of establishing annual high-resolution crop datasets to track the detailed spatio-temporal trajectories of cropping patterns that are essential to support sustainable cropland management and agricultural development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
帅气善斓发布了新的文献求助10
1秒前
yuanyueyue完成签到,获得积分10
1秒前
2秒前
chall应助一二三四11采纳,获得10
4秒前
4秒前
illi发布了新的文献求助10
5秒前
5秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
上官若男应助科研通管家采纳,获得10
6秒前
6秒前
wanci应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
852应助科研通管家采纳,获得10
6秒前
Alex应助科研通管家采纳,获得30
6秒前
小蘑菇应助科研通管家采纳,获得10
6秒前
丘比特应助科研通管家采纳,获得10
6秒前
小马甲应助Xinzz采纳,获得10
6秒前
Owen应助科研通管家采纳,获得10
6秒前
猪猪hero应助科研通管家采纳,获得10
6秒前
6秒前
猪猪hero应助科研通管家采纳,获得10
7秒前
JamesPei应助科研通管家采纳,获得10
7秒前
酷波er应助科研通管家采纳,获得10
7秒前
猪猪hero应助科研通管家采纳,获得10
7秒前
Alex应助科研通管家采纳,获得30
7秒前
科研通AI6应助科研通管家采纳,获得30
7秒前
思源应助科研通管家采纳,获得10
7秒前
斯文败类应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
香蕉觅云应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
7秒前
天天快乐应助科研通管家采纳,获得10
7秒前
7秒前
Orange应助科研通管家采纳,获得10
7秒前
CodeCraft应助科研通管家采纳,获得10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5626820
求助须知:如何正确求助?哪些是违规求助? 4712727
关于积分的说明 14960335
捐赠科研通 4782760
什么是DOI,文献DOI怎么找? 2554542
邀请新用户注册赠送积分活动 1516181
关于科研通互助平台的介绍 1476457