Spatial and temporal dynamics of cropland in the Sanjiang Plain from 2014 to 2020 based on annual 30 m crop data layers

三江平原 环境科学 农业 种植 作物 土地覆盖 粮食安全 自然地理学 土地利用 地理 生态学 林业 生物 沼泽 湿地 考古
作者
Cui Jin,Zeyu Zhang,Hao Cai,Ge Cao,Xintao Li,Xueming Li
出处
期刊:The Journal of Agricultural Science [Cambridge University Press]
卷期号:161 (2): 175-186
标识
DOI:10.1017/s002185962300014x
摘要

Abstract The land cover of the Sanjiang Plain has changed dramatically since the 1950s. Although previous studies have analysed its spatiotemporal dynamics at long time intervals, a near real-time and accurate representation of the interannual evolution of cropping patterns in this region is of far-reaching importance for rationally allocating agricultural resources and ensuring food security. Based on the 30 m and 10 m land cover datasets in 2015 and 2017–2019, the current study used Landsat-8 satellite data in 2014, 2016 and 2020 to identify paddy rice and dryland crops using a decision tree classification approach and constructed the annual cropland datasets of the Sanjiang Plain from 2014 to 2020. The results show that the overall classification accuracies of crop datasets exceeded 95%, and the Kappa coefficients were higher than 0.92. The average annual accuracies of users and producers were 93% and 94% for rice fields and 97% and 95% for dryland crops, respectively. During the 7 years, the total area of paddy fields and dryland crops decreased by 5% and 8%. However, with minor positive and negative variation between years. 24.2% of paddy rice and 42% of dryland crops has been cultivated under 4 years. The centres of gravity for both crops mainly aggregated in the central counties with the migration direction and magnitude varying interannually. The current study emphasizes the importance of establishing annual high-resolution crop datasets to track the detailed spatio-temporal trajectories of cropping patterns that are essential to support sustainable cropland management and agricultural development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
10发布了新的文献求助10
刚刚
高高完成签到 ,获得积分10
刚刚
AAAAAAAAAAA发布了新的文献求助10
刚刚
1秒前
wxaaaa完成签到,获得积分10
1秒前
李爱国应助dd采纳,获得10
2秒前
3秒前
Jasper应助感性的凉面采纳,获得10
4秒前
4秒前
5秒前
5秒前
6秒前
情怀应助顺顺采纳,获得10
6秒前
garyaa发布了新的文献求助10
6秒前
6秒前
NexusExplorer应助奔奔采纳,获得10
6秒前
Orange应助Clean采纳,获得10
7秒前
Lucas应助ww采纳,获得10
7秒前
8秒前
ttttttuu完成签到,获得积分10
8秒前
9秒前
刘涵完成签到 ,获得积分10
9秒前
小马甲应助zhui采纳,获得10
9秒前
10完成签到,获得积分10
9秒前
9秒前
9秒前
Rainielove0215完成签到,获得积分0
10秒前
zz完成签到,获得积分10
11秒前
11秒前
kyle完成签到,获得积分10
13秒前
感性的凉面完成签到,获得积分20
13秒前
13秒前
请叫我风吹麦浪应助末岛采纳,获得10
14秒前
Aprial发布了新的文献求助30
14秒前
dd发布了新的文献求助10
14秒前
传奇3应助科研小菜鸟采纳,获得10
14秒前
在水一方应助惠惠采纳,获得10
15秒前
16秒前
冷艳贵公子王少完成签到 ,获得积分10
16秒前
KatzeBaliey完成签到,获得积分10
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794