Spatial and temporal dynamics of cropland in the Sanjiang Plain from 2014 to 2020 based on annual 30 m crop data layers

三江平原 环境科学 农业 种植 作物 土地覆盖 粮食安全 自然地理学 土地利用 地理 生态学 林业 生物 沼泽 湿地 考古
作者
Cui Jin,Zeyu Zhang,Hongyan Cai,Ge Cao,Xintao Li,Xueming Li
出处
期刊:The Journal of Agricultural Science [Cambridge University Press]
卷期号:161 (2): 175-186
标识
DOI:10.1017/s002185962300014x
摘要

Abstract The land cover of the Sanjiang Plain has changed dramatically since the 1950s. Although previous studies have analysed its spatiotemporal dynamics at long time intervals, a near real-time and accurate representation of the interannual evolution of cropping patterns in this region is of far-reaching importance for rationally allocating agricultural resources and ensuring food security. Based on the 30 m and 10 m land cover datasets in 2015 and 2017–2019, the current study used Landsat-8 satellite data in 2014, 2016 and 2020 to identify paddy rice and dryland crops using a decision tree classification approach and constructed the annual cropland datasets of the Sanjiang Plain from 2014 to 2020. The results show that the overall classification accuracies of crop datasets exceeded 95%, and the Kappa coefficients were higher than 0.92. The average annual accuracies of users and producers were 93% and 94% for rice fields and 97% and 95% for dryland crops, respectively. During the 7 years, the total area of paddy fields and dryland crops decreased by 5% and 8%. However, with minor positive and negative variation between years. 24.2% of paddy rice and 42% of dryland crops has been cultivated under 4 years. The centres of gravity for both crops mainly aggregated in the central counties with the migration direction and magnitude varying interannually. The current study emphasizes the importance of establishing annual high-resolution crop datasets to track the detailed spatio-temporal trajectories of cropping patterns that are essential to support sustainable cropland management and agricultural development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
谨慎冰海发布了新的文献求助10
1秒前
2秒前
5秒前
卢西完成签到,获得积分10
5秒前
DA发布了新的文献求助10
6秒前
桃子e发布了新的文献求助10
9秒前
bkagyin应助谨慎冰海采纳,获得10
9秒前
10秒前
动听若灵完成签到,获得积分10
10秒前
10秒前
11秒前
格格完成签到 ,获得积分10
12秒前
打打应助小胖采纳,获得10
16秒前
时一列车关注了科研通微信公众号
16秒前
XC发布了新的文献求助30
18秒前
18秒前
lym发布了新的文献求助10
21秒前
隐形曼青应助研友_LN32Mn采纳,获得10
21秒前
21秒前
sxb10101应助米热采纳,获得10
22秒前
菟丝子完成签到,获得积分10
22秒前
科目三应助DA采纳,获得10
24秒前
小宋发布了新的文献求助10
24秒前
淡定访琴完成签到,获得积分10
27秒前
zhao 123完成签到 ,获得积分10
29秒前
水的叶子66完成签到,获得积分10
30秒前
wanci应助粗心的从露采纳,获得10
33秒前
李健的粉丝团团长应助gxc采纳,获得10
37秒前
海滩长颈鹿完成签到,获得积分10
38秒前
40秒前
soda完成签到,获得积分10
40秒前
42秒前
orixero应助等待的谷波采纳,获得10
42秒前
OKOK完成签到,获得积分10
42秒前
43秒前
yohoo发布了新的文献求助10
44秒前
45秒前
46秒前
OKOK发布了新的文献求助10
46秒前
木又权完成签到,获得积分10
48秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Driving under the influence: Epidemiology, etiology, prevention, policy, and treatment 500
生活在欺瞒的年代:傅树介政治斗争回忆录 260
Functional Analysis 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5872888
求助须知:如何正确求助?哪些是违规求助? 6492970
关于积分的说明 15670072
捐赠科研通 4990278
什么是DOI,文献DOI怎么找? 2690192
邀请新用户注册赠送积分活动 1632707
关于科研通互助平台的介绍 1590589