Manifold clustering-based prediction for dynamic multiobjective optimization

水准点(测量) 计算机科学 聚类分析 人口 数学优化 进化算法 机器学习 多目标优化 人工智能 集合(抽象数据类型) 算法 数学 社会学 地理 程序设计语言 人口学 大地测量学
作者
Yan Li,Wenlong Qi,Anyong Qin,Shengxiang Yang,Dunwei Gong,Boyang Qu,Jing Liang
出处
期刊:Swarm and evolutionary computation [Elsevier]
卷期号:77: 101254-101254 被引量:11
标识
DOI:10.1016/j.swevo.2023.101254
摘要

Prediction-based evolutionary algorithms have gained much attention in solving dynamic multiobjective optimization problems due to their impressive performance in tracking the changing Pareto set (PS). Current approaches focus on developing learning or estimation models to reveal the dynamic regularities from the correlations between the historical PSs. However, the underlying knowledge in the PS itself, such as the neighborhood distribution of the individuals and their local correlation in the decision space, is ignored which may affect prediction accuracy and the quality of the predicted population. Therefore, a manifold clustering-based predictor is proposed in this paper. A manifold learning method is introduced to preprocess the historical PSs to find and reserve the intrinsic neighborhood relationship of the individuals. As a result, a number of local linear manifolds are extracted from each historical PS, and the individuals in a population are divided into several clusters according to the different linear manifolds they attach to. The individuals belonging to one cluster can be regarded as linearly correlated and may have a similar moving trend. Thus, the subsequent prediction is conducted in units of the cluster and multiple prediction models are built to predict the new PS in a decomposition manner. Finally, an initial population with good diversity and distribution can be generated for the new environment. The proposed algorithm is tested on a variety of commonly-used benchmark problems and compared with eight state-of-the-art algorithms. Experimental results confirm the efficacy of the proposed algorithm, especially on the problems with nonlinear correlation between the decision variables.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
rudjs发布了新的文献求助10
1秒前
3秒前
3秒前
5秒前
情怀应助orange9采纳,获得10
5秒前
华仔应助rudjs采纳,获得10
6秒前
奥特曼发布了新的文献求助80
8秒前
123完成签到,获得积分10
9秒前
yatou完成签到,获得积分20
11秒前
尤里有气发布了新的文献求助10
12秒前
田様应助朴素妙梦采纳,获得10
12秒前
13秒前
不去明知山完成签到 ,获得积分10
14秒前
14秒前
15秒前
小二郎应助liu采纳,获得10
16秒前
18秒前
18秒前
19秒前
sisii发布了新的文献求助10
20秒前
21秒前
慕青应助mj采纳,获得10
23秒前
Hello应助石榴汁的书采纳,获得10
23秒前
Elvira应助科研通管家采纳,获得10
24秒前
桐桐应助科研通管家采纳,获得10
24秒前
24秒前
顾矜应助科研通管家采纳,获得10
24秒前
碎碎完成签到 ,获得积分10
24秒前
友好听云发布了新的文献求助10
25秒前
25秒前
怡然的映真完成签到,获得积分10
25秒前
rudjs发布了新的文献求助10
26秒前
27秒前
自觉高跟鞋完成签到,获得积分10
28秒前
29秒前
30秒前
31秒前
田様应助狂发文章采纳,获得10
31秒前
aass发布了新的文献求助10
32秒前
四季刻歌完成签到,获得积分10
32秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Very-high-order BVD Schemes Using β-variable THINC Method 990
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
Field Guide to Insects of South Africa 660
Mantodea of the World: Species Catalog 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3396049
求助须知:如何正确求助?哪些是违规求助? 3006035
关于积分的说明 8818966
捐赠科研通 2693026
什么是DOI,文献DOI怎么找? 1475062
科研通“疑难数据库(出版商)”最低求助积分说明 682393
邀请新用户注册赠送积分活动 675495