Offline Peptide Fractionation and Parallel Reaction Monitoring MS for the Quantitation of Low-Abundance Plasma Proteins

化学 色谱法 分馏 质谱法 背景(考古学) 定量蛋白质组学 选择性反应监测 标准曲线 定量分析(化学) 血液蛋白质类 分析化学(期刊) 串联质谱法 蛋白质组学 生物化学 古生物学 基因 生物
作者
Claudia Gaither,Robert Popp,Vincent R. Richard,René P. Zahedi,Christoph H. Borchers
出处
期刊:Methods in molecular biology [Springer Science+Business Media]
卷期号:: 353-364
标识
DOI:10.1007/978-1-0716-2978-9_23
摘要

Mass spectrometry (MS)-based protein quantitation is an attractive means for research and diagnostics due to its high specificity, precision, sensitivity, versatility, and the ability to develop multiplexed assays for the "absolute" quantitation of virtually any protein target. However, due to the large dynamic range of protein concentrations in blood, high abundance proteins in blood plasma hinder the detectability and quantification of lower-abundance proteins which are often relevant in the context of different diseases. Here we outline a streamlined method involving offline high-pH reversed-phase fractionation of human plasma samples followed by the quantitative analysis of specific fractions using nanoLC-parallel reaction monitoring (PRM) on a Q Exactive Plus mass spectrometer for peptide detection and quantitation with increased sensitivity. Because we use a set of synthetic peptide standards, we can more efficiently determine the precise retention times of the target peptides in the first-dimensional separation and specifically collect eluting fractions of interest for the subsequent targeted MS quantitation, making the analysis faster and easier. An eight-point standard curve was generated by serial dilution of a mixture of previously validated unlabeled ("light") synthetic peptides of interest at known concentrations. The corresponding heavy stable-isotope-labeled standard (SIS) analogues were used as normalizers to account for losses during sample processing and analysis. Using this method, we were able to improve the sensitivity of plasma protein quantitation by up to 50-fold compared to using nanoLC-PRM alone.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
地学韦丰吉司长完成签到,获得积分10
1秒前
1秒前
慕青应助vivi采纳,获得50
2秒前
999完成签到,获得积分10
2秒前
狗头233发布了新的文献求助10
3秒前
喝可乐的萝卜兔完成签到 ,获得积分10
3秒前
浩气长存完成签到 ,获得积分10
5秒前
在水一方应助科研通管家采纳,获得10
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
汉堡包应助科研通管家采纳,获得10
8秒前
天天快乐应助科研通管家采纳,获得10
8秒前
香蕉诗蕊应助科研通管家采纳,获得10
8秒前
老福贵儿应助科研通管家采纳,获得10
8秒前
小白应助科研通管家采纳,获得10
8秒前
mutong应助科研通管家采纳,获得10
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
iVANPENNY应助科研通管家采纳,获得10
9秒前
邓佳鑫Alan应助科研通管家采纳,获得10
9秒前
777完成签到,获得积分10
9秒前
大个应助科研通管家采纳,获得10
9秒前
smottom应助科研通管家采纳,获得10
9秒前
香蕉诗蕊应助科研通管家采纳,获得10
9秒前
上官若男应助科研通管家采纳,获得30
9秒前
iVANPENNY应助科研通管家采纳,获得10
9秒前
xz应助科研通管家采纳,获得10
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
有重名的应助Two-Capitals采纳,获得10
9秒前
邓佳鑫Alan应助科研通管家采纳,获得10
9秒前
香蕉诗蕊应助科研通管家采纳,获得10
9秒前
香蕉觅云应助科研通管家采纳,获得10
10秒前
帅气善斓应助科研通管家采纳,获得10
10秒前
老福贵儿应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
smottom应助科研通管家采纳,获得10
10秒前
赘婿应助科研通管家采纳,获得10
10秒前
帅气善斓应助科研通管家采纳,获得10
10秒前
充电宝应助科研通管家采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Peptide Synthesis_Methods and Protocols 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603579
求助须知:如何正确求助?哪些是违规求助? 4688566
关于积分的说明 14854693
捐赠科研通 4693840
什么是DOI,文献DOI怎么找? 2540863
邀请新用户注册赠送积分活动 1507108
关于科研通互助平台的介绍 1471806