Extracorporeal Shock Wave Therapy Improves Nontraumatic Knee Contracture in a Rat Model

医学 挛缩 肌肉挛缩 关节挛缩 膝关节 外科 体外 泌尿科
作者
Yang Li,Qing Liao,Jing Zeng,Zhenzhen Zhang,Baojian Li,Ziyi Luo,Xue‐jun Xiao,Gang Liu
出处
期刊:Clinical Orthopaedics and Related Research [Ovid Technologies (Wolters Kluwer)]
卷期号:481 (4): 822-834 被引量:3
标识
DOI:10.1097/corr.0000000000002559
摘要

Joint contractures occur frequently after trauma or immobilization, but few reliable treatments are available. Extracorporeal shock wave therapy (ESWT) is often used for various musculoskeletal conditions, but whether it is effective for treating joint contractures and the mechanisms through which it might work for that condition remain unclear.Using a rat model, we asked, does ESWT (1) inhibit the progression of knee contracture, (2) ameliorate histopathologic joint changes, and (3) improve serum and myofascial fibrosis-related factors? We also asked, (4) what is the possible mechanism by which ESWT inhibits knee contracture?Thirty-two male Sprague-Dawley rats (12 weeks old and weighing 300 to 400 g) were randomly separated into two groups: control group (eight rats) and noncontrol group (24) in the first week. Rats in the control group were kept free in cages for 4 weeks, and the right lower limbs of the rats in the noncontrol group were immobilized in plaster for 4 weeks. ROM was then measured for each rat with or without 4 weeks of immobilization. After ROM measurement, rats in the noncontrol group were randomly separated into three groups: immobilization group (eight rats), remobilization group (eight rats), and remobilization with ESWT group (eight rats) at Week 4. Knee contracture was induced in rats by fixing the right knee with a plaster cast as in a previous study. The plaster cast was removed after 4 weeks; knee contracture was established when passive ROM was decreased and dysfunction such as abnormal gait occurred. Subsequently, rats with a remobilized joint contracture were treated with or without ESWT for 15 days (on Days 5, 10, and 15). The therapeutic effect was examined using ROM, joint diameter (as an indication of swelling), histopathologic changes, and the levels of fibrosis-related extracellular matrix component factors (hyaluronic acid, serum procollagen peptide, and laminin). The effect of ESWT on fibrosis protein was also evaluated using immunohistochemistry, quantitative polymerase chain reaction (qPCR), and Western blot. The expressions of factors in the TGF-β/SMADs pathway were also determined using Western blot and qPCR.ESWT mitigated immobilization-induced knee contracture in rats by improving ROM (immobilization versus remobilization with ESWT: 53° ± 8° versus 32° ± 8° [95% confidence interval 13° to 30°]; p < 0.001) and joint swelling (immobilization versus remobilization with ESWT: 8 ± 0.8 cm versus 6 ± 0.3 cm [95% CI 0.4 to 2.2 cm]; p = 0.01). Histopathologic features of remission were alleviated after ESWT (immobilization versus remobilization with ESWT: thickness of the knee space: 0.2 ± 0.03 mm versus 0.6 ± 0.01 mm [95% CI -0.49 to -0.33 mm]; p < 0.001. On Masson staining, the positive expression area, which indicates collagen fiber deposition, was 24% ± 5% versus 9% ± 2% ([95% CI 10% to 21%]; p < 0.001). ESWT improved the serum fibrosis factors of hyaluronic acid, procollagen peptide, and laminin (immobilization versus remobilization with ESWT: hyaluronic acid: 412 ± 32 versus 326 ±15 ng/mL [95% CI 29 to 144 ng/mL]; p = 0.003; serum procollagen peptide: 19 ± 1 versus 12 ±1 ng/mL [95% CI 3 to 11 ng/mL]; p < 0.001; laminin: 624 ± 78 versus 468 ±9 ng/mL [95% CI 81 to 231 ng/mL]; p = 0.006) and myofascial factors of α-SMA and Type I collagen associated with immobilization-induced contractures.The findings suggest that ESWT improved joint contracture by inhibiting the TGF-β1/SMADs signaling pathway in rats.This work suggests ESWT may be worth exploring in preliminary research in humans to determine whether it may be a treatment option for patients with nontraumatic knee contractures. If the mechanism of ESWT can be confirmed in humans, ESWT might be a therapy for diseases involved in the TGF-β1/SMADs signaling pathway, such as hypertroic scarring and scleroderma.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
君君发布了新的文献求助10
1秒前
Yang完成签到,获得积分10
2秒前
风雨完成签到,获得积分10
2秒前
2秒前
3秒前
彭于晏应助小西采纳,获得30
3秒前
可爱的函函应助布布采纳,获得10
4秒前
5秒前
轩辕德地发布了新的文献求助10
5秒前
nine发布了新的文献求助30
5秒前
yxl要顺利毕业_发6篇C完成签到,获得积分10
6秒前
JamesPei应助小敦采纳,获得10
6秒前
今非发布了新的文献求助10
6秒前
李健的小迷弟应助通~采纳,获得30
6秒前
6秒前
6秒前
fanfan44390发布了新的文献求助10
6秒前
Zhang完成签到,获得积分10
7秒前
小二郎应助小田采纳,获得10
8秒前
8秒前
隐形曼青应助liike采纳,获得10
8秒前
phd发布了新的文献求助10
8秒前
8秒前
dingdong发布了新的文献求助30
8秒前
Orange应助清秀的语山采纳,获得50
9秒前
顾矜应助科研通管家采纳,获得10
9秒前
思源应助科研通管家采纳,获得10
9秒前
9秒前
无花果应助科研通管家采纳,获得10
9秒前
酷波er应助科研通管家采纳,获得10
9秒前
9秒前
大李包完成签到,获得积分10
9秒前
思源应助费城青年采纳,获得10
9秒前
田様应助科研通管家采纳,获得10
9秒前
Ava应助科研通管家采纳,获得10
9秒前
NexusExplorer应助科研通管家采纳,获得10
9秒前
帮助我的人永远不死完成签到,获得积分20
9秒前
无花果应助科研通管家采纳,获得10
9秒前
ding应助科研通管家采纳,获得10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794