DLVR-NWP: A Novel Data-Driven Bearing Degradation Model for RUL Estimation

降级(电信) 非线性系统 特征(语言学) 变量(数学) 计算机科学 过程(计算) 频域 领域(数学分析) 时域 特征提取 人工智能 数学 计算机视觉 电信 数学分析 语言学 哲学 物理 量子力学 操作系统
作者
Qiang Liu,Yijie Zhang,Xiaosheng Si,Zizhu Fan
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-9
标识
DOI:10.1109/tim.2023.3244839
摘要

Performance degradation process modeling and remaining useful life (RUL) estimation have gained much attention for condition-based maintenance of important engineering equipment such as the bearings of gantry cranes. The existing work mainly uses the original or elaborately selected features that may not necessarily correspond to the current degradation process. In view of this, this article proposes a novel data-driven bearing degradation modeling method, called dynamic latent variable reconstruction nonlinear Wiener process (DLVR-NWP). The proposed DLVR-NWP method is composed of a feature generation, a dynamic latent variable (DLV)-based nonlinear degradation detection, a DLV reconstruction (DLVR)-based degradation-relevant dynamic feature extraction, and a failure magnitude-based nonlinear Wiener process (NWP) model for RUL estimation. The reduced-dimensional degradation-relevant dynamic feature is first extracted from multiple highly-correlated time-domain and frequency-domain features using a DLV reconstruction method that finds out the magnitude feature along the historical similar degradation processes. By incorporating the DLV-based nonlinear degradation detection mechanism, degradation-relevant dynamic features during the degradation stage instead of the overall operation duration are integrated into the NWP model for RUL estimation. Results from case studies on real bearings indicate that the proposed method using degradation-relevant dynamic feature significantly improves the RUL estimation accuracy compared to the traditional methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
书生发布了新的文献求助20
1秒前
sjh完成签到,获得积分10
2秒前
lilioa85完成签到,获得积分10
2秒前
2秒前
yyy完成签到,获得积分10
3秒前
NexusExplorer应助wwww采纳,获得10
3秒前
3秒前
3秒前
Simplefy发布了新的文献求助10
3秒前
老实续发布了新的文献求助10
4秒前
4秒前
xuan完成签到,获得积分10
5秒前
英俊牛排完成签到,获得积分10
5秒前
6秒前
温酒随行发布了新的文献求助10
6秒前
赤兔发布了新的文献求助10
6秒前
沉默的云朵完成签到,获得积分10
6秒前
小马甲应助珍惜采纳,获得10
6秒前
好困发布了新的文献求助10
7秒前
Nyxia发布了新的文献求助10
7秒前
8秒前
白秋雪完成签到,获得积分10
8秒前
9秒前
Jally发布了新的文献求助10
9秒前
9秒前
可乐完成签到,获得积分20
9秒前
跳跃凡桃发布了新的文献求助10
10秒前
10秒前
芒晨牧微完成签到,获得积分10
10秒前
小雨发布了新的文献求助10
11秒前
蛰伏的小宇宙完成签到,获得积分10
11秒前
呦呦呵呵完成签到,获得积分10
11秒前
苻涵菡完成签到,获得积分10
11秒前
12秒前
SS1988发布了新的文献求助10
12秒前
13秒前
13秒前
靳晗聪123关注了科研通微信公众号
14秒前
Xx完成签到,获得积分10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 710
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3564116
求助须知:如何正确求助?哪些是违规求助? 3137325
关于积分的说明 9421827
捐赠科研通 2837701
什么是DOI,文献DOI怎么找? 1559976
邀请新用户注册赠送积分活动 729224
科研通“疑难数据库(出版商)”最低求助积分说明 717246