热光电伏打
材料科学
纳米技术
光电子学
工程物理
物理
共发射极
作者
Qixiang Wang,Zhequn Huang,Jiansheng Zhang,Guan-Yao Huang,Dewen Wang,Heng Zhang,Jiaqi Guo,Min Ding,Jintao Chen,Zihan Zhang,Zhenhua Rui,Wen Shang,Jiayue Xu,Jian Zhang,Junichiro Shiomi,Tairan Fu,Tao Deng,Steven G. Johnson,Hongxing Xu,Kehang Cui
出处
期刊:Nano Letters
[American Chemical Society]
日期:2023-02-07
卷期号:23 (4): 1144-1151
被引量:9
标识
DOI:10.1021/acs.nanolett.2c03476
摘要
Thermophotovoltaic (TPV) generators provide continuous and high-efficiency power output by utilizing local thermal emitters to convert energy from various sources to thermal radiation matching the bandgaps of photovoltaic cells. Lack of effective guidelines for thermal emission control at high temperatures, poor thermal stability, and limited fabrication scalability are the three key challenges for the practical deployment of TPV devices. Here we develop a hierarchical sequential-learning optimization framework and experimentally realize a 6″ module-scale polaritonic thermal emitter with bandwidth-controlled thermal emission as well as excellent thermal stability at 1473 K. The 300 nm bandwidth thermal emission is realized by a complex photon polariton based on the superposition of Tamm plasmon polariton and surface plasmon polariton. We experimentally achieve a spectral efficiency of 65.6% (wavelength range of 0.4-8 μm) with statistical deviation less than 4% over the 6″ emitter, demonstrating industrial-level reliability for module-scale TPV applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI