Deep Learning Image Reconstruction for CT: Technical Principles and Clinical Prospects

医学 迭代重建 图像质量 人工智能 深度学习 计算机视觉 投影(关系代数) 降噪 氡变换 噪音(视频) 工件(错误) 医学物理学 图像(数学) 算法 计算机科学
作者
Lennart R. Koetzier,Domenico Mastrodicasa,Timothy P. Szczykutowicz,Niels R. van der Werf,Adam Wang,Veit Sandfort,Aart J. van der Molen,Dominik Fleischmann,Martin J. Willemink
出处
期刊:Radiology [Radiological Society of North America]
卷期号:306 (3) 被引量:109
标识
DOI:10.1148/radiol.221257
摘要

Filtered back projection (FBP) has been the standard CT image reconstruction method for 4 decades. A simple, fast, and reliable technique, FBP has delivered high-quality images in several clinical applications. However, with faster and more advanced CT scanners, FBP has become increasingly obsolete. Higher image noise and more artifacts are especially noticeable in lower-dose CT imaging using FBP. This performance gap was partly addressed by model-based iterative reconstruction (MBIR). Yet, its "plastic" image appearance and long reconstruction times have limited widespread application. Hybrid iterative reconstruction partially addressed these limitations by blending FBP with MBIR and is currently the state-of-the-art reconstruction technique. In the past 5 years, deep learning reconstruction (DLR) techniques have become increasingly popular. DLR uses artificial intelligence to reconstruct high-quality images from lower-dose CT faster than MBIR. However, the performance of DLR algorithms relies on the quality of data used for model training. Higher-quality training data will become available with photon-counting CT scanners. At the same time, spectral data would greatly benefit from the computational abilities of DLR. This review presents an overview of the principles, technical approaches, and clinical applications of DLR, including metal artifact reduction algorithms. In addition, emerging applications and prospects are discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
独特的友琴完成签到 ,获得积分10
1秒前
叭叭叭完成签到,获得积分20
2秒前
4秒前
4秒前
weijian完成签到,获得积分10
5秒前
5秒前
范海辛完成签到 ,获得积分10
5秒前
6秒前
dc给dc的求助进行了留言
7秒前
7秒前
7秒前
依木关注了科研通微信公众号
9秒前
9秒前
dafer发布了新的文献求助20
10秒前
10秒前
Bean发布了新的文献求助10
10秒前
12秒前
安详夏柳发布了新的文献求助10
12秒前
starboy2nd完成签到,获得积分10
13秒前
13秒前
15秒前
15秒前
陌生人发布了新的文献求助10
15秒前
小酒窝发布了新的文献求助10
16秒前
汤泽琪发布了新的文献求助10
18秒前
18秒前
栀雨味完成签到,获得积分20
19秒前
李健的小迷弟应助球球采纳,获得10
20秒前
Georges-09发布了新的文献求助10
20秒前
白石杏完成签到,获得积分10
20秒前
20秒前
21秒前
柔弱映梦发布了新的文献求助10
21秒前
依木发布了新的文献求助10
24秒前
华仔应助EMMA采纳,获得10
25秒前
123456发布了新的文献求助10
25秒前
科研通AI5应助汤泽琪采纳,获得10
25秒前
赘婿应助栀雨味采纳,获得10
25秒前
英姑应助岁岁十六-采纳,获得10
26秒前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Wind energy generation systems - Part 3-2: Design requirements for floating offshore wind turbines 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
The River Chief System and An Ecological Initiative for Public Participation in China 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3694794
求助须知:如何正确求助?哪些是违规求助? 3246169
关于积分的说明 9849209
捐赠科研通 2957893
什么是DOI,文献DOI怎么找? 1621846
邀请新用户注册赠送积分活动 767429
科研通“疑难数据库(出版商)”最低求助积分说明 741126