Bayesian theory: Methods and applications

贝叶斯网络 条件概率 全概率定律 链式规则(概率) 贝叶斯定理 事件(粒子物理) 贝叶斯概率 计算机科学 概率逻辑 数学 人工智能 图形模型 朴素贝叶斯分类器 条件独立性 机器学习 算法 后验概率 统计 物理 量子力学 支持向量机
作者
Yaser Sabzevari,Saeid Eslamian
出处
期刊:Elsevier eBooks [Elsevier]
卷期号:: 57-68 被引量:1
标识
DOI:10.1016/b978-0-12-821285-1.00026-9
摘要

Bayesian law expresses the relationship between dependent variables. The Bayesian relation uses a numerical estimate of the probabilistic knowledge of the hypothesis before the observations occur, and provides a numerical estimate of the probabilistic knowledge of the hypothesis after the observations. This law for classifying phenomena is based on the probability of occurrence or nonoccurrence of a phenomenon and is important and widely used in probability theory. If we can choose such a separation for a given sample space that knowing which of the separated events occurred would reduce an important part of the uncertainty. This is useful because it can be used to calculate the probability of an event being conditional on the occurrence or nonoccurrence of another event. In many cases, it is difficult to calculate the probability of an incident directly. Using this theorem and conditioning one event on another, the probability can be calculated. Bayesian theory has three methods: Bayes Optimal Classifier, Naive Bayes classifier, and Bayesian network. In hydrological issues, the Bayesian network has been used more. These networks are graphical networks that represent a set of possible variables and their conditional dependencies by a directional noncyclic graph (DAG). Bayesian network nodes represent variables that can be visible values, hidden variables, or unknown parameters. The edges of this network indicate dependencies. Each node has a probability function that includes the initial probability (for parentless nodes) or conditional probabilities related to the combination of different states of the parent nodes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
受伤灵薇完成签到,获得积分10
1秒前
1秒前
zhull应助LZH采纳,获得10
2秒前
无情的宛儿完成签到,获得积分10
3秒前
3秒前
外向贞发布了新的文献求助10
5秒前
一番发布了新的文献求助10
5秒前
刘玥言发布了新的文献求助10
5秒前
6秒前
LJQ发布了新的文献求助30
6秒前
7秒前
8秒前
SQzy发布了新的文献求助10
8秒前
001完成签到,获得积分10
9秒前
CipherSage应助泡泡儿采纳,获得10
10秒前
淡淡衣完成签到,获得积分10
10秒前
11秒前
12秒前
王十二完成签到 ,获得积分10
12秒前
程程发布了新的文献求助10
13秒前
mushroomdoor发布了新的文献求助10
13秒前
SYLH应助LZH采纳,获得20
14秒前
罗wq发布了新的文献求助10
14秒前
jiangmingjiao完成签到,获得积分10
15秒前
yookia应助科研通管家采纳,获得10
15秒前
无私的芹应助科研通管家采纳,获得10
15秒前
15秒前
白桃枝完成签到,获得积分10
15秒前
无情向薇应助科研通管家采纳,获得10
16秒前
SYLH应助科研通管家采纳,获得10
16秒前
充电宝应助科研通管家采纳,获得10
16秒前
无私的芹应助科研通管家采纳,获得10
16秒前
SYLH应助科研通管家采纳,获得10
16秒前
脑洞疼应助科研通管家采纳,获得10
16秒前
烟花应助科研通管家采纳,获得10
16秒前
英姑应助科研通管家采纳,获得10
16秒前
16秒前
zhixiang应助科研通管家采纳,获得10
16秒前
cr7发布了新的文献求助10
16秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959533
求助须知:如何正确求助?哪些是违规求助? 3505776
关于积分的说明 11126048
捐赠科研通 3237690
什么是DOI,文献DOI怎么找? 1789252
邀请新用户注册赠送积分活动 871623
科研通“疑难数据库(出版商)”最低求助积分说明 802916