Bayesian theory: Methods and applications

贝叶斯网络 条件概率 全概率定律 链式规则(概率) 贝叶斯定理 事件(粒子物理) 贝叶斯概率 计算机科学 概率逻辑 数学 人工智能 图形模型 朴素贝叶斯分类器 条件独立性 机器学习 算法 后验概率 统计 物理 量子力学 支持向量机
作者
Yaser Sabzevari,Saeid Eslamian
出处
期刊:Elsevier eBooks [Elsevier]
卷期号:: 57-68 被引量:1
标识
DOI:10.1016/b978-0-12-821285-1.00026-9
摘要

Bayesian law expresses the relationship between dependent variables. The Bayesian relation uses a numerical estimate of the probabilistic knowledge of the hypothesis before the observations occur, and provides a numerical estimate of the probabilistic knowledge of the hypothesis after the observations. This law for classifying phenomena is based on the probability of occurrence or nonoccurrence of a phenomenon and is important and widely used in probability theory. If we can choose such a separation for a given sample space that knowing which of the separated events occurred would reduce an important part of the uncertainty. This is useful because it can be used to calculate the probability of an event being conditional on the occurrence or nonoccurrence of another event. In many cases, it is difficult to calculate the probability of an incident directly. Using this theorem and conditioning one event on another, the probability can be calculated. Bayesian theory has three methods: Bayes Optimal Classifier, Naive Bayes classifier, and Bayesian network. In hydrological issues, the Bayesian network has been used more. These networks are graphical networks that represent a set of possible variables and their conditional dependencies by a directional noncyclic graph (DAG). Bayesian network nodes represent variables that can be visible values, hidden variables, or unknown parameters. The edges of this network indicate dependencies. Each node has a probability function that includes the initial probability (for parentless nodes) or conditional probabilities related to the combination of different states of the parent nodes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YU发布了新的文献求助10
刚刚
刚刚
刚刚
JABBA发布了新的文献求助10
1秒前
CipherSage应助hjjjjj1采纳,获得10
1秒前
大力云朵发布了新的文献求助10
1秒前
含糊的幼旋完成签到,获得积分10
1秒前
丘比特应助火星上大白菜采纳,获得10
1秒前
zhang完成签到,获得积分10
1秒前
3秒前
supwow发布了新的文献求助20
3秒前
3秒前
槿荣完成签到,获得积分10
3秒前
3秒前
动听千风发布了新的文献求助10
4秒前
momo完成签到,获得积分10
4秒前
小龙虾完成签到,获得积分10
4秒前
科研通AI6应助tinghai86采纳,获得10
4秒前
段段发布了新的文献求助10
5秒前
5秒前
5秒前
tuyfytjt完成签到,获得积分20
5秒前
liu完成签到,获得积分20
5秒前
5秒前
lyy发布了新的文献求助10
5秒前
星夜吹笛牛上完成签到,获得积分10
5秒前
滑腻腻的小鱼完成签到,获得积分10
6秒前
DijiaXu应助畅快焦采纳,获得10
6秒前
6秒前
xxx发布了新的文献求助10
7秒前
Sheart发布了新的文献求助10
8秒前
非哲发布了新的文献求助10
8秒前
翁怜晴发布了新的文献求助10
9秒前
yuan完成签到,获得积分10
9秒前
ldy发布了新的文献求助10
9秒前
田様应助Auh采纳,获得10
9秒前
10秒前
10秒前
搜集达人应助JABBA采纳,获得10
10秒前
宁宁完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4576354
求助须知:如何正确求助?哪些是违规求助? 3995613
关于积分的说明 12369373
捐赠科研通 3669547
什么是DOI,文献DOI怎么找? 2022294
邀请新用户注册赠送积分活动 1056342
科研通“疑难数据库(出版商)”最低求助积分说明 943562