亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Analyzing students' attention by gaze tracking and object detection in classroom teaching

凝视 计算机科学 班级(哲学) 卷积神经网络 人工智能 点(几何) 对象(语法) 目标检测 透视图(图形) 跟踪(教育) 眼动 分割 独创性 计算机视觉 人机交互 心理学 创造力 社会心理学 数学 教育学 几何学
作者
Hui Xu,Junjie Zhang,Hui Sun,Miao Qi,Jun Kong
出处
期刊:Data technologies and applications [Emerald (MCB UP)]
卷期号:57 (5): 643-667 被引量:5
标识
DOI:10.1108/dta-09-2021-0236
摘要

Purpose Attention is one of the most important factors to affect the academic performance of students. Effectively analyzing students' attention in class can promote teachers' precise teaching and students' personalized learning. To intelligently analyze the students' attention in classroom from the first-person perspective, this paper proposes a fusion model based on gaze tracking and object detection. In particular, the proposed attention analysis model does not depend on any smart equipment. Design/methodology/approach Given a first-person view video of students' learning, the authors first estimate the gazing point by using the deep space–time neural network. Second, single shot multi-box detector and fast segmentation convolutional neural network are comparatively adopted to accurately detect the objects in the video. Third, they predict the gazing objects by combining the results of gazing point estimation and object detection. Finally, the personalized attention of students is analyzed based on the predicted gazing objects and the measurable eye movement criteria. Findings A large number of experiments are carried out on a public database and a new dataset that is built in a real classroom. The experimental results show that the proposed model not only can accurately track the students' gazing trajectory and effectively analyze the fluctuation of attention of the individual student and all students but also provide a valuable reference to evaluate the process of learning of students. Originality/value The contributions of this paper can be summarized as follows. The analysis of students' attention plays an important role in improving teaching quality and student achievement. However, there is little research on how to automatically and intelligently analyze students' attention. To alleviate this problem, this paper focuses on analyzing students' attention by gaze tracking and object detection in classroom teaching, which is significant for practical application in the field of education. The authors proposed an effectively intelligent fusion model based on the deep neural network, which mainly includes the gazing point module and the object detection module, to analyze students' attention in classroom teaching instead of relying on any smart wearable device. They introduce the attention mechanism into the gazing point module to improve the performance of gazing point detection and perform some comparison experiments on the public dataset to prove that the gazing point module can achieve better performance. They associate the eye movement criteria with visual gaze to get quantifiable objective data for students' attention analysis, which can provide a valuable basis to evaluate the learning process of students, provide useful learning information of students for both parents and teachers and support the development of individualized teaching. They built a new database that contains the first-person view videos of 11 subjects in a real classroom and employ it to evaluate the effectiveness and feasibility of the proposed model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dzll发布了新的文献求助10
3秒前
yyywwxx发布了新的文献求助10
14秒前
......完成签到,获得积分10
19秒前
这个手刹不太灵完成签到 ,获得积分10
29秒前
领导范儿应助Jox采纳,获得10
31秒前
......发布了新的文献求助30
33秒前
田様应助......采纳,获得30
41秒前
sheen发布了新的文献求助10
42秒前
随性完成签到 ,获得积分10
45秒前
orixero应助昏睡的早晨采纳,获得10
1分钟前
科研通AI2S应助再睡一会儿采纳,获得10
1分钟前
yyywwxx完成签到,获得积分10
1分钟前
1分钟前
aero完成签到 ,获得积分10
1分钟前
sheen完成签到,获得积分10
1分钟前
庄默羽完成签到,获得积分10
1分钟前
卓卓卓发布了新的文献求助10
1分钟前
1分钟前
1分钟前
Jenny发布了新的文献求助100
1分钟前
1分钟前
DAVLATOV发布了新的文献求助10
1分钟前
十六应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得30
1分钟前
1分钟前
ccc发布了新的文献求助10
1分钟前
wodeqiche2007发布了新的文献求助10
2分钟前
2分钟前
张鑫发布了新的文献求助10
2分钟前
卓卓卓完成签到,获得积分20
2分钟前
张鑫完成签到,获得积分10
2分钟前
沉默傲薇发布了新的文献求助10
2分钟前
科研通AI5应助张鑫采纳,获得10
2分钟前
2分钟前
ksmile完成签到 ,获得积分10
2分钟前
2分钟前
华仔应助ccc采纳,获得10
2分钟前
YU发布了新的文献求助10
2分钟前
shweah2003完成签到,获得积分10
2分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3516334
求助须知:如何正确求助?哪些是违规求助? 3098575
关于积分的说明 9240070
捐赠科研通 2793695
什么是DOI,文献DOI怎么找? 1533164
邀请新用户注册赠送积分活动 712599
科研通“疑难数据库(出版商)”最低求助积分说明 707384