Benchmarking algorithms for joint integration of unpaired and paired single-cell RNA-seq and ATAC-seq data

模态(人机交互) 染色质 计算机科学 注释 数据类型 计算生物学 RNA序列 标杆管理 模式 水准点(测量) 数据挖掘 人工智能 基因 生物 基因表达 遗传学 转录组 社会科学 营销 社会学 业务 程序设计语言 大地测量学 地理
作者
Michelle Y. Y. Lee,Klaus H. Kaestner,Mingyao Li
标识
DOI:10.1101/2023.02.01.526609
摘要

Abstract Single-cell RNA-sequencing (scRNA-seq) measures gene expression in single cells, while single-nucleus ATAC-sequencing (snATAC-seq) enables the quantification of chromatin accessibility in single nuclei. These two data types provide complementary information for deciphering cell types/states. However, when analyzed individually, scRNA-seq and snATAC-seq data often produce conflicting results regarding cell type/state assignment. In addition, there is a loss of power as the two modalities reflect the same underlying cell types/states. Recently, it has become possible to measure both gene expression and chromatin accessibility from the same nucleus. Such paired data make it possible to directly model the relationships between the two modalities. However, given the availability of the vast amount of single-modality data, it is desirable to integrate the paired and unpaired single-modality data to gain a comprehensive view of the cellular complexity. Here, we benchmarked the performance of seven existing single-cell multi-omic data integration methods. Specifically, we evaluated whether these methods are able to uncover peak-gene associations from single-modality data, and to what extent the multiome data can provide additional guidance for the analysis of the existing single-modality data. Our results indicate that multiome data are helpful for annotating single-modality data, but the number of cells in the multiome data is critical to ensure a good cell type annotation. Additionally, when generating a multiome dataset, the number of cells is more important than sequencing depth for cell type annotation. Lastly, Seurat v4 is the best at integrating scRNA-seq, snATAC-seq, and multiome data even in the presence of complex batch effects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小白完成签到,获得积分10
1秒前
13504544355完成签到 ,获得积分10
3秒前
3秒前
yoyo发布了新的文献求助10
6秒前
Buoyant关注了科研通微信公众号
7秒前
迷人灵完成签到,获得积分10
7秒前
小李之家发布了新的文献求助10
8秒前
8秒前
Suzy发布了新的文献求助150
12秒前
13秒前
15秒前
一五完成签到 ,获得积分10
16秒前
Orange应助阿比盖尔采纳,获得10
16秒前
18秒前
林夕完成签到,获得积分10
20秒前
情怀应助蜜桃四季春采纳,获得10
21秒前
CipherSage应助傻子与白痴采纳,获得10
21秒前
雪白问兰应助科研通管家采纳,获得10
21秒前
21秒前
丘比特应助科研通管家采纳,获得10
22秒前
在水一方应助科研通管家采纳,获得10
22秒前
白鸽应助科研通管家采纳,获得10
22秒前
脑洞疼应助JIE采纳,获得10
22秒前
Shirley应助科研通管家采纳,获得10
22秒前
科研通AI2S应助科研通管家采纳,获得10
22秒前
Leonardi应助科研通管家采纳,获得200
22秒前
Shirley应助科研通管家采纳,获得10
22秒前
今后应助科研通管家采纳,获得10
22秒前
薰硝壤应助科研通管家采纳,获得10
22秒前
汉堡包应助科研通管家采纳,获得10
22秒前
22秒前
脑洞疼应助科研通管家采纳,获得10
22秒前
22秒前
桐桐应助科研通管家采纳,获得10
22秒前
充电宝应助科研通管家采纳,获得20
23秒前
23秒前
23秒前
乱码完成签到,获得积分10
24秒前
最初呢发布了新的文献求助10
25秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141127
求助须知:如何正确求助?哪些是违规求助? 2792031
关于积分的说明 7801479
捐赠科研通 2448267
什么是DOI,文献DOI怎么找? 1302482
科研通“疑难数据库(出版商)”最低求助积分说明 626591
版权声明 601226