Benchmarking algorithms for joint integration of unpaired and paired single-cell RNA-seq and ATAC-seq data

模态(人机交互) 染色质 计算机科学 注释 数据类型 计算生物学 RNA序列 标杆管理 模式 水准点(测量) 数据挖掘 人工智能 基因 生物 基因表达 遗传学 转录组 社会学 地理 程序设计语言 营销 业务 大地测量学 社会科学
作者
Michelle Y. Y. Lee,Klaus H. Kaestner,Mingyao Li
标识
DOI:10.1101/2023.02.01.526609
摘要

Abstract Single-cell RNA-sequencing (scRNA-seq) measures gene expression in single cells, while single-nucleus ATAC-sequencing (snATAC-seq) enables the quantification of chromatin accessibility in single nuclei. These two data types provide complementary information for deciphering cell types/states. However, when analyzed individually, scRNA-seq and snATAC-seq data often produce conflicting results regarding cell type/state assignment. In addition, there is a loss of power as the two modalities reflect the same underlying cell types/states. Recently, it has become possible to measure both gene expression and chromatin accessibility from the same nucleus. Such paired data make it possible to directly model the relationships between the two modalities. However, given the availability of the vast amount of single-modality data, it is desirable to integrate the paired and unpaired single-modality data to gain a comprehensive view of the cellular complexity. Here, we benchmarked the performance of seven existing single-cell multi-omic data integration methods. Specifically, we evaluated whether these methods are able to uncover peak-gene associations from single-modality data, and to what extent the multiome data can provide additional guidance for the analysis of the existing single-modality data. Our results indicate that multiome data are helpful for annotating single-modality data, but the number of cells in the multiome data is critical to ensure a good cell type annotation. Additionally, when generating a multiome dataset, the number of cells is more important than sequencing depth for cell type annotation. Lastly, Seurat v4 is the best at integrating scRNA-seq, snATAC-seq, and multiome data even in the presence of complex batch effects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
含蓄文博完成签到 ,获得积分10
1秒前
田様应助hai采纳,获得10
1秒前
123发布了新的文献求助10
2秒前
刘雨森完成签到 ,获得积分10
3秒前
大大怪发布了新的文献求助10
3秒前
小马甲应助guantlv采纳,获得10
3秒前
李成恩完成签到 ,获得积分10
4秒前
淡然冬灵发布了新的文献求助10
4秒前
东方欲晓完成签到 ,获得积分0
4秒前
INBI发布了新的文献求助10
4秒前
万能图书馆应助lxy采纳,获得10
5秒前
hrzmlily发布了新的文献求助10
5秒前
zhaomr完成签到,获得积分10
5秒前
5秒前
搬运工完成签到,获得积分10
5秒前
6秒前
xcx完成签到,获得积分10
6秒前
6秒前
6秒前
7秒前
充电宝应助dearcih采纳,获得10
7秒前
半夏完成签到,获得积分10
7秒前
7秒前
JayWu发布了新的文献求助10
8秒前
苹果发布了新的文献求助30
8秒前
che完成签到,获得积分10
8秒前
8秒前
9秒前
情怀应助笨笨含羞草采纳,获得10
9秒前
9秒前
11发布了新的文献求助10
9秒前
云飞扬应助科研通管家采纳,获得10
9秒前
彭于彦祖应助科研通管家采纳,获得30
10秒前
呜哈哈哈哈完成签到,获得积分20
10秒前
英姑应助科研通管家采纳,获得10
10秒前
天天快乐应助科研通管家采纳,获得10
10秒前
颖宝老公完成签到,获得积分10
10秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954099
求助须知:如何正确求助?哪些是违规求助? 3500131
关于积分的说明 11098052
捐赠科研通 3230564
什么是DOI,文献DOI怎么找? 1786012
邀请新用户注册赠送积分活动 869802
科研通“疑难数据库(出版商)”最低求助积分说明 801594