IDOD-YOLOV7: Image-Dehazing YOLOV7 for Object Detection in Low-Light Foggy Traffic Environments

计算机科学 人工智能 目标检测 稳健性(进化) 计算机视觉 卷积神经网络 图像质量 图像(数学) 模式识别(心理学) 生物化学 基因 化学
作者
Yongsheng Qiu,Yuanyao Lu,Yuantao Wang,Haiyang Jiang
出处
期刊:Sensors [MDPI AG]
卷期号:23 (3): 1347-1347 被引量:21
标识
DOI:10.3390/s23031347
摘要

Convolutional neural network (CNN)-based autonomous driving object detection algorithms have excellent detection results on conventional datasets, but the detector performance can be severely degraded in low-light foggy weather environments. Existing methods have difficulty in achieving a balance between low-light image enhancement and object detection. To alleviate this problem, this paper proposes a foggy traffic environment object detection framework, IDOD-YOLOV7. This network is based on joint optimal learning of image defogging module IDOD (AOD + SAIP) and YOLOV7 detection modules. Specifically, for low-light foggy images, we propose to improve the image quality by joint optimization of image defogging (AOD) and image enhancement (SAIP), where the parameters of the SAIP module are predicted by a miniature CNN network and the AOD module performs image defogging by optimizing the atmospheric scattering model. The experimental results show that the IDOD module not only improves the image defogging quality for low-light fog images but also achieves better results in objective evaluation indexes such as PSNR and SSIM. The IDOD and YOLOV7 learn jointly in an end-to-end manner so that object detection can be performed while image enhancement is executed in a weakly supervised manner. Finally, a low-light fogged traffic image dataset (FTOD) was built by physical fogging in order to solve the domain transfer problem. The training of IDOD-YOLOV7 network by a real dataset (FTOD) improves the robustness of the model. We performed various experiments to visually and quantitatively compare our method with several state-of-the-art methods to demonstrate its superiority over the others. The IDOD-YOLOV7 algorithm not only suppresses the artifacts of low-light fog images and improves the visual effect of images but also improves the perception of autonomous driving in low-light foggy environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
默默老黑发布了新的文献求助10
2秒前
古月完成签到,获得积分20
2秒前
lgx关闭了lgx文献求助
2秒前
3秒前
oldniu完成签到,获得积分10
3秒前
直率的拉米完成签到,获得积分10
4秒前
饱满贞发布了新的文献求助10
8秒前
10秒前
11秒前
14秒前
jnrr发布了新的文献求助10
14秒前
zhuann完成签到,获得积分10
16秒前
ceeray23发布了新的文献求助111
16秒前
BlankWhite完成签到,获得积分10
17秒前
19秒前
李爱国应助adeno采纳,获得10
19秒前
iidae完成签到,获得积分10
20秒前
21秒前
火火发布了新的文献求助10
22秒前
打打应助只羊采纳,获得10
23秒前
x-17发布了新的文献求助20
24秒前
Estrella应助jnrr采纳,获得10
24秒前
25秒前
25秒前
十七完成签到 ,获得积分10
26秒前
我爱大鸡腿啦啦关注了科研通微信公众号
28秒前
风中傲柔发布了新的文献求助10
28秒前
布鲁爱思发布了新的文献求助10
30秒前
情怀应助苹果白凡采纳,获得10
30秒前
32秒前
千千应助南街初晴采纳,获得10
32秒前
yar应助沙脑采纳,获得10
33秒前
风中傲柔完成签到,获得积分10
35秒前
英姑应助LiCQ采纳,获得10
35秒前
科目三应助ML采纳,获得10
37秒前
慕青应助布鲁爱思采纳,获得10
37秒前
王提发布了新的文献求助10
38秒前
明亮半雪关注了科研通微信公众号
39秒前
斯文败类应助火火采纳,获得10
41秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Crystal structures of UP2, UAs2, UAsS, and UAsSe in the pressure range up to 60 GPa 570
Mantodea of the World: Species Catalog Andrew M 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3466497
求助须知:如何正确求助?哪些是违规求助? 3059297
关于积分的说明 9065872
捐赠科研通 2749797
什么是DOI,文献DOI怎么找? 1508699
科研通“疑难数据库(出版商)”最低求助积分说明 697013
邀请新用户注册赠送积分活动 696838