残余物
收缩率
稳健性(进化)
失真(音乐)
降噪
方位(导航)
噪音(视频)
信号(编程语言)
还原(数学)
算法
计算机科学
控制理论(社会学)
工程类
电子工程
人工智能
数学
机器学习
基因
生物化学
图像(数学)
CMOS芯片
化学
放大器
程序设计语言
控制(管理)
几何学
作者
Jinyu Tong,Shiyu Tang,Yi Wu,Haiyang Pan,Jinde Zheng
出处
期刊:Measurement
[Elsevier]
日期:2022-11-29
卷期号:206: 112282-112282
被引量:26
标识
DOI:10.1016/j.measurement.2022.112282
摘要
Aiming at the problem of signal distortion caused by deep residual shrinkage network (DRSN) in the noise reduction process, improved deep residual shrinkage network (IDRSN) are proposed and applied to rolling bearing fault diagnosis under noise backgrounds. Firstly, we design an improved pseudo-soft threshold function (IPSTF) to eliminate the signal distortion caused by the soft threshold function(STF). Then, a pseudo-soft threshold block (PSTB) and an adaptive slope block (ASB) are proposed to construct an improved residual shrinkage building unit (IRSBU) for setting the optimal threshold and slope adaptively. Finally, the method is applied to rolling bearing fault diagnosis in two different operating conditions under noise backgrounds. The results show that the proposed method has higher accuracy and robustness than the existing methods.
科研通智能强力驱动
Strongly Powered by AbleSci AI