Evaluation of supplemental fat sources and pre-farrow essential fatty acid intake on lactating sow performance and essential fatty acid composition of colostrum, milk, and adipose tissue

初乳 牛脂 共轭亚油酸 哺乳期 亚油酸 垃圾箱 食品科学 豆粕 脂肪酸 大豆油 断奶 NEFA公司 生物 亚麻酸 脂肪组织 动物脂肪 动物科学 怀孕 内分泌学 生物化学 农学 抗体 遗传学 原材料 免疫学 生态学
作者
Julia P Holen,J. C. Woodworth,Mike D Tokach,Robert D. Goodband,Joel M. DeRouchey,Jordan T Gebhardt
出处
期刊:Journal of Animal Science [Oxford University Press]
标识
DOI:10.1093/jas/skac394
摘要

A total of 91 sows (Line 241, DNA Genetics) were used to evaluate the effects of supplemental fat sources and essential fatty acid intake on sow farrowing performance, litter growth performance, and essential fatty acid composition of colostrum, milk, and adipose tissue. At approximatelyday 107 of gestation, sows were blocked by body weight and parity, then allotted to 1 of 5 experimental treatments as part of a 2 × 2 + 1 factorial arrangement. Experimental diets were corn-soybean meal-based with a control diet that contained no added fat or diets with 3% added fat as either beef tallow or soybean oil, with consumption of the added fat diets starting on day 107 or 112 of gestation and fed until weaning. Thus, sows were provided low essential fatty acids (EFA; as linoleic and α-linolenic acid) without supplemental fat or with beef tallow or high EFA with soybean oil. Sows were provided approximately 2.8 kg/d of their assigned lactation diet pre-farrow and then provided ad libitum access after parturition. Sows consuming diets with beef tallow had greater lactation ADFI (fat source, P = 0.030), but lower daily linoleic acid (LA) and α-linolenic acid (ALA) intake than sows that consumed diets with soybean oil (fat source, P < 0.001). Supplemental fat sources providing either low or high EFA did not influence litter growth performance (fat source, P > 0.05). Sows fed diets with beef tallow did not influence the LA composition of colostrum; however, lactation diets with high EFA provided by soybean oil on day 107 of gestation increased colostrum LA concentration compared to providing diets on day 112 of gestation (fat source × time, P = 0.084; time, P < 0.001). Additionally, regardless of pre-farrow timing, ALA concentration of colostrum increased when sows consumed diets with soybean oil compared to beef tallow (fat source, P < 0.001). Both LA and ALA concentrations of milk at weaning were greater for sows that consumed diets with soybean oil compared to beef tallow (fat source, P < 0.001). Furthermore, concentrations of LA and ALA within adipose tissue were greater at weaning when sows consumed diets with high EFA compared to low EFA (fat source, P < 0.05). These responses suggest that providing dietary fat sources with high concentrations of EFA can increase backfat, colostrum, and milk LA and ALA. However, in this experiment, changes in colostrum and milk composition did not influence litter growth performance.The lactating sow secretes essential fatty acids (EFA) in colostrum and milk to support litter growth and if dietary linoleic (LA) and alpha-linolenic acid (ALA) intake during lactation are limited, subsequent reproductive function of sows may be impaired. However, the inclusion of dietary fat sources with varying EFA composition in lactation diets provided shortly prior to farrowing can increase the energy density of the diet and modify colostrum and milk fatty acid profiles that may influence litter growth performance and survivability. The first objective of this trial was to evaluate the impact of providing sows lactation diets with dietary fat sources that provide low or high EFA on colostrum, milk, and sow adipose tissue fatty acid composition. A second objective was to evaluate the timing of feeding low- or high-EFA diets within the last week of gestation on colostrum and milk EFA composition. Overall, providing dietary fat sources with high concentrations of EFA shortly prior to farrowing altered fatty acid profiles of colostrum, milk, and backfat resulting in increased LA and ALA when compared to providing sows diets with low EFA. However, changes in colostrum and milk composition did not alter litter growth performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
快乐的如风完成签到,获得积分10
刚刚
1秒前
吃猫的鱼完成签到,获得积分10
1秒前
脑洞疼应助润润轩轩采纳,获得10
2秒前
刘文静完成签到,获得积分10
3秒前
Southluuu发布了新的文献求助10
3秒前
chenjyuu发布了新的文献求助10
3秒前
3秒前
粗暴的仙人掌完成签到,获得积分20
3秒前
4秒前
4秒前
4秒前
logic发布了新的文献求助10
4秒前
习习应助生动的雨竹采纳,获得10
4秒前
bo完成签到 ,获得积分10
4秒前
迟大猫应助啵乐乐采纳,获得10
5秒前
安雯完成签到 ,获得积分10
5秒前
HuLL完成签到,获得积分10
5秒前
Yolo完成签到 ,获得积分10
5秒前
难过的慕青完成签到,获得积分10
5秒前
7秒前
7秒前
7秒前
8秒前
无花果应助sunzhiyu233采纳,获得10
8秒前
韭黄完成签到,获得积分20
8秒前
9秒前
诚c发布了新的文献求助10
9秒前
自然秋柳完成签到 ,获得积分10
9秒前
我是老大应助经法采纳,获得10
9秒前
默默的皮牙子应助经法采纳,获得10
9秒前
orixero应助经法采纳,获得10
9秒前
小马甲应助经法采纳,获得10
9秒前
柚子成精应助经法采纳,获得10
10秒前
小蘑菇应助经法采纳,获得10
10秒前
深情安青应助经法采纳,获得10
10秒前
李爱国应助经法采纳,获得10
10秒前
共享精神应助经法采纳,获得10
10秒前
yyyyyy完成签到 ,获得积分10
10秒前
LL完成签到,获得积分10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759