State estimation of a lithium-ion battery based on multi-feature indicators of ultrasonic guided waves

超声波传感器 特征(语言学) 电池(电) 荷电状态 计算机科学 健康状况 声学 锂离子电池 工程类 物理 功率(物理) 语言学 量子力学 哲学
作者
Xiaoyu Li,Wen Hua,Chuxin Wu,Shanpu Zheng,Yong Tian,Jindong Tian
出处
期刊:Journal of energy storage [Elsevier]
卷期号:56: 106113-106113 被引量:21
标识
DOI:10.1016/j.est.2022.106113
摘要

Ultrasonic non-destructive testing technology has been applied to battery state estimation applications to ensure the safety of the energy storage system. However, the accuracy and robustness of battery state estimation should be improved. In this paper, the state estimation of a lithium-ion battery based on multi-feature indicators of ultrasonic guided waves is studied. Piezoelectric ceramic ultrasonic probes with a fixed angle are used as the transducers. Eleven feature indicators of ultrasonic signals are analyzed. The appropriate feature indicators for battery state estimation are determined based on sensitivity analysis and correlation analysis. Considering the frequency response characteristics of the probe and the battery, the multi-frequency response characteristics of the battery are analyzed. Finally, seven feature indicators with multi-frequency excitation are selected. Subsequently, an adaptive machine learning model is designed to estimate the battery state. Based on the experimental results, the root mean square error (RMSE) of the battery state of charge (SOC) estimation result is less than 2.36 %. The applicability of the proposed method is verified by battery fully charged and non-fully charged experiments. Meanwhile, the method can quickly diagnose the side reaction process under abuse conditions such as overcharge and overdischarge, which provides a new method for non-destructive battery state evaluation. • Eleven ultrasonic feature parameters are analyzed for battery state estimation. • The multi-frequency ultrasonic guided waves on the battery are analyzed. • An adaptive fusion machine learning model is designed for state estimation. • The method is useful for non-destructive battery state evaluation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lzzzz完成签到,获得积分10
1秒前
czj完成签到,获得积分10
1秒前
曲琦饼完成签到,获得积分10
1秒前
qingfeng完成签到,获得积分10
1秒前
优秀的白筠完成签到,获得积分10
1秒前
2秒前
黑猫小苍完成签到,获得积分10
2秒前
Annie完成签到 ,获得积分10
2秒前
欣喜书桃完成签到,获得积分10
2秒前
以恒之心发布了新的文献求助10
3秒前
4秒前
羊皮大哈发布了新的文献求助10
5秒前
叹千泠完成签到,获得积分10
6秒前
6秒前
倒数第二完成签到,获得积分10
7秒前
卷大喵完成签到,获得积分10
7秒前
青青草完成签到,获得积分10
7秒前
菠菜菜str完成签到,获得积分10
8秒前
Rainbow完成签到,获得积分10
8秒前
年华完成签到,获得积分10
8秒前
e394282438完成签到,获得积分10
8秒前
hi_zhanghao完成签到,获得积分10
9秒前
思源应助ldroc采纳,获得10
9秒前
旋疯小子发布了新的文献求助10
10秒前
黎明完成签到,获得积分10
10秒前
RDQ完成签到,获得积分10
11秒前
tingalan完成签到,获得积分10
11秒前
12秒前
以恒之心完成签到,获得积分10
13秒前
13秒前
Ava应助pcyang采纳,获得30
13秒前
桐桐应助τ涛采纳,获得10
14秒前
AURORA丶完成签到,获得积分10
14秒前
14秒前
wanghao完成签到 ,获得积分10
15秒前
xpd发布了新的文献求助30
15秒前
隐形曼青应助韩乐乐采纳,获得10
15秒前
贺兰鸵鸟完成签到,获得积分10
16秒前
完美世界应助黎明采纳,获得10
16秒前
zxs哈哈哈哈完成签到,获得积分10
16秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3167325
求助须知:如何正确求助?哪些是违规求助? 2818822
关于积分的说明 7922729
捐赠科研通 2478613
什么是DOI,文献DOI怎么找? 1320412
科研通“疑难数据库(出版商)”最低求助积分说明 632776
版权声明 602443