State estimation of a lithium-ion battery based on multi-feature indicators of ultrasonic guided waves

超声波传感器 特征(语言学) 电池(电) 荷电状态 计算机科学 健康状况 声学 锂离子电池 工程类 物理 功率(物理) 语言学 量子力学 哲学
作者
Xiaoyu Li,Wen Hua,Chuxin Wu,Shanpu Zheng,Yong Tian,Jindong Tian
出处
期刊:Journal of energy storage [Elsevier BV]
卷期号:56: 106113-106113 被引量:30
标识
DOI:10.1016/j.est.2022.106113
摘要

Ultrasonic non-destructive testing technology has been applied to battery state estimation applications to ensure the safety of the energy storage system. However, the accuracy and robustness of battery state estimation should be improved. In this paper, the state estimation of a lithium-ion battery based on multi-feature indicators of ultrasonic guided waves is studied. Piezoelectric ceramic ultrasonic probes with a fixed angle are used as the transducers. Eleven feature indicators of ultrasonic signals are analyzed. The appropriate feature indicators for battery state estimation are determined based on sensitivity analysis and correlation analysis. Considering the frequency response characteristics of the probe and the battery, the multi-frequency response characteristics of the battery are analyzed. Finally, seven feature indicators with multi-frequency excitation are selected. Subsequently, an adaptive machine learning model is designed to estimate the battery state. Based on the experimental results, the root mean square error (RMSE) of the battery state of charge (SOC) estimation result is less than 2.36 %. The applicability of the proposed method is verified by battery fully charged and non-fully charged experiments. Meanwhile, the method can quickly diagnose the side reaction process under abuse conditions such as overcharge and overdischarge, which provides a new method for non-destructive battery state evaluation. • Eleven ultrasonic feature parameters are analyzed for battery state estimation. • The multi-frequency ultrasonic guided waves on the battery are analyzed. • An adaptive fusion machine learning model is designed for state estimation. • The method is useful for non-destructive battery state evaluation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ttttt应助逗号采纳,获得10
1秒前
yayee完成签到,获得积分10
4秒前
西西弗斯完成签到,获得积分10
4秒前
芝麻完成签到,获得积分10
4秒前
5秒前
欸嘿完成签到,获得积分10
5秒前
5秒前
克里斯蒂娜关注了科研通微信公众号
6秒前
Ava应助LIANG采纳,获得10
6秒前
芝麻发布了新的文献求助10
7秒前
肖旻发布了新的文献求助10
8秒前
小王完成签到 ,获得积分10
10秒前
10秒前
xiao茗完成签到,获得积分10
10秒前
科研通AI5应助肉松小贝采纳,获得10
10秒前
戴葱头完成签到 ,获得积分10
10秒前
11秒前
科研通AI5应助研友_nEoBP8采纳,获得10
11秒前
大个应助老宋采纳,获得10
11秒前
hhp完成签到,获得积分10
11秒前
猫猫发布了新的文献求助10
12秒前
爆米花应助林林采纳,获得10
13秒前
李爱国应助怕孤独的绮南采纳,获得10
14秒前
香蕉觅云应助语上采纳,获得10
15秒前
15秒前
糊涂生活糊涂过完成签到 ,获得积分10
15秒前
15秒前
15秒前
千a发布了新的文献求助10
16秒前
Hello应助Blue采纳,获得10
17秒前
Auston_zhong应助事了拂衣去采纳,获得10
18秒前
Bamboo发布了新的文献求助10
18秒前
19秒前
英俊的铭应助猫猫采纳,获得10
19秒前
落叶解三秋完成签到,获得积分10
19秒前
moony完成签到 ,获得积分10
19秒前
小杨爱吃羊完成签到 ,获得积分10
21秒前
斯文败类应助追寻的依柔采纳,获得10
22秒前
机灵的冰夏完成签到,获得积分10
23秒前
舒服的萍发布了新的文献求助10
23秒前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Nonhuman Primate Models in Biomedical Research: State of the Science and Future Needs 300
Fundamentals of Medical Device Regulations, Fifth Edition(e-book) 300
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
A proof-of-concept study on a universal standard kit to evaluate the risks of inspectors for their foundational ability of visual inspection of injectable drug products 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3696269
求助须知:如何正确求助?哪些是违规求助? 3248206
关于积分的说明 9856543
捐赠科研通 2959728
什么是DOI,文献DOI怎么找? 1622845
邀请新用户注册赠送积分活动 768294
科研通“疑难数据库(出版商)”最低求助积分说明 741455