State estimation of a lithium-ion battery based on multi-feature indicators of ultrasonic guided waves

超声波传感器 特征(语言学) 电池(电) 荷电状态 计算机科学 健康状况 声学 锂离子电池 工程类 物理 功率(物理) 语言学 量子力学 哲学
作者
Xiaoyu Li,Wen Hua,Chuxin Wu,Shanpu Zheng,Yong Tian,Jindong Tian
出处
期刊:Journal of energy storage [Elsevier BV]
卷期号:56: 106113-106113 被引量:30
标识
DOI:10.1016/j.est.2022.106113
摘要

Ultrasonic non-destructive testing technology has been applied to battery state estimation applications to ensure the safety of the energy storage system. However, the accuracy and robustness of battery state estimation should be improved. In this paper, the state estimation of a lithium-ion battery based on multi-feature indicators of ultrasonic guided waves is studied. Piezoelectric ceramic ultrasonic probes with a fixed angle are used as the transducers. Eleven feature indicators of ultrasonic signals are analyzed. The appropriate feature indicators for battery state estimation are determined based on sensitivity analysis and correlation analysis. Considering the frequency response characteristics of the probe and the battery, the multi-frequency response characteristics of the battery are analyzed. Finally, seven feature indicators with multi-frequency excitation are selected. Subsequently, an adaptive machine learning model is designed to estimate the battery state. Based on the experimental results, the root mean square error (RMSE) of the battery state of charge (SOC) estimation result is less than 2.36 %. The applicability of the proposed method is verified by battery fully charged and non-fully charged experiments. Meanwhile, the method can quickly diagnose the side reaction process under abuse conditions such as overcharge and overdischarge, which provides a new method for non-destructive battery state evaluation. • Eleven ultrasonic feature parameters are analyzed for battery state estimation. • The multi-frequency ultrasonic guided waves on the battery are analyzed. • An adaptive fusion machine learning model is designed for state estimation. • The method is useful for non-destructive battery state evaluation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助温柔一刀采纳,获得10
刚刚
哈皮发布了新的文献求助10
1秒前
TRISTE发布了新的文献求助10
1秒前
1秒前
852应助曾经的臻采纳,获得10
2秒前
解语花应助科研通管家采纳,获得10
4秒前
打打应助科研通管家采纳,获得10
4秒前
乐乐应助科研通管家采纳,获得10
4秒前
丘比特应助科研通管家采纳,获得10
4秒前
Orange应助科研通管家采纳,获得10
4秒前
冷静苗条完成签到,获得积分10
4秒前
科目三应助科研通管家采纳,获得10
4秒前
英姑应助科研通管家采纳,获得10
4秒前
Wind0240应助科研通管家采纳,获得10
4秒前
完美世界应助科研通管家采纳,获得30
4秒前
5秒前
鸣笛应助科研通管家采纳,获得30
5秒前
Wind0240应助科研通管家采纳,获得10
5秒前
研友_Zrlk7L完成签到,获得积分10
6秒前
Jasper应助小歪采纳,获得10
6秒前
CipherSage应助yaalan采纳,获得10
6秒前
6秒前
10秒前
hahaha完成签到,获得积分10
10秒前
彩色追命完成签到,获得积分20
10秒前
10秒前
11秒前
二十八画生完成签到 ,获得积分10
11秒前
十八发布了新的文献求助10
12秒前
13秒前
深情安青应助能干的麦片采纳,获得10
13秒前
14秒前
吴南宛完成签到,获得积分20
14秒前
梦游游游完成签到,获得积分10
15秒前
彩色追命发布了新的文献求助10
16秒前
yu发布了新的文献求助10
16秒前
曾经的臻发布了新的文献求助10
16秒前
18秒前
心旷神怡完成签到,获得积分10
19秒前
19秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956715
求助须知:如何正确求助?哪些是违规求助? 3502823
关于积分的说明 11110134
捐赠科研通 3233745
什么是DOI,文献DOI怎么找? 1787489
邀请新用户注册赠送积分活动 870685
科研通“疑难数据库(出版商)”最低求助积分说明 802152