State estimation of a lithium-ion battery based on multi-feature indicators of ultrasonic guided waves

超声波传感器 特征(语言学) 电池(电) 荷电状态 计算机科学 健康状况 声学 锂离子电池 工程类 物理 功率(物理) 语言学 量子力学 哲学
作者
Xiaoyu Li,Wen Hua,Chuxin Wu,Shanpu Zheng,Yong Tian,Jindong Tian
出处
期刊:Journal of energy storage [Elsevier]
卷期号:56: 106113-106113 被引量:37
标识
DOI:10.1016/j.est.2022.106113
摘要

Ultrasonic non-destructive testing technology has been applied to battery state estimation applications to ensure the safety of the energy storage system. However, the accuracy and robustness of battery state estimation should be improved. In this paper, the state estimation of a lithium-ion battery based on multi-feature indicators of ultrasonic guided waves is studied. Piezoelectric ceramic ultrasonic probes with a fixed angle are used as the transducers. Eleven feature indicators of ultrasonic signals are analyzed. The appropriate feature indicators for battery state estimation are determined based on sensitivity analysis and correlation analysis. Considering the frequency response characteristics of the probe and the battery, the multi-frequency response characteristics of the battery are analyzed. Finally, seven feature indicators with multi-frequency excitation are selected. Subsequently, an adaptive machine learning model is designed to estimate the battery state. Based on the experimental results, the root mean square error (RMSE) of the battery state of charge (SOC) estimation result is less than 2.36 %. The applicability of the proposed method is verified by battery fully charged and non-fully charged experiments. Meanwhile, the method can quickly diagnose the side reaction process under abuse conditions such as overcharge and overdischarge, which provides a new method for non-destructive battery state evaluation. • Eleven ultrasonic feature parameters are analyzed for battery state estimation. • The multi-frequency ultrasonic guided waves on the battery are analyzed. • An adaptive fusion machine learning model is designed for state estimation. • The method is useful for non-destructive battery state evaluation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助往好处想采纳,获得10
刚刚
刚刚
小豆包发布了新的文献求助10
刚刚
1秒前
肖婉婷完成签到,获得积分10
1秒前
BowieHuang应助SSY采纳,获得10
1秒前
稳中的豆沙包完成签到 ,获得积分10
2秒前
媛媛完成签到,获得积分10
2秒前
鲁木发布了新的文献求助10
3秒前
33完成签到,获得积分10
3秒前
chen01hang应助我不是BOB采纳,获得50
4秒前
李健应助彬彬发文章采纳,获得10
4秒前
Honahlee完成签到,获得积分10
4秒前
马明旋发布了新的文献求助20
5秒前
5秒前
6秒前
852应助strongfrog采纳,获得10
6秒前
科研通AI6应助清秀送终采纳,获得10
7秒前
7秒前
7秒前
7秒前
CipherSage应助TearMarks采纳,获得10
7秒前
silin完成签到,获得积分10
7秒前
小豆包完成签到,获得积分20
8秒前
xttju2014发布了新的文献求助10
8秒前
8秒前
super完成签到,获得积分20
9秒前
9秒前
Ak完成签到,获得积分0
9秒前
田小班发布了新的文献求助10
10秒前
Irene发布了新的文献求助10
10秒前
认真日记本完成签到 ,获得积分10
10秒前
www发布了新的文献求助10
10秒前
11秒前
桐桐应助哈哈哈哈哈哈采纳,获得10
11秒前
李小莉0419发布了新的文献求助10
11秒前
Ava应助MC采纳,获得10
12秒前
baobaot发布了新的文献求助30
12秒前
12秒前
承乐应助小豆包采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608407
求助须知:如何正确求助?哪些是违规求助? 4693040
关于积分的说明 14876313
捐赠科研通 4717445
什么是DOI,文献DOI怎么找? 2544206
邀请新用户注册赠送积分活动 1509230
关于科研通互助平台的介绍 1472836