亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Cysteine Sulfenylation of Protein Disulfide Isomerase Links Oxidative Stress to Thrombosis

化学 亚磺酸 半胱氨酸 氧化应激 生物化学 蛋白质二硫键异构酶 氧化磷酸化
作者
Moua Yang,James Flaumenhaft,Christina Scartelli,Sachin Patel,Kate S. Carroll,Brian C. Smith,Nicola Pozzi,Robert Flaumenhaft
出处
期刊:Blood [Elsevier BV]
卷期号:140 (Supplement 1): 2658-2659 被引量:1
标识
DOI:10.1182/blood-2022-169835
摘要

Oxidative stress increases the risk of clinically significant thrombosis in the setting of inflammation, malignancy, infection, and dyslipidemia. Oxidants generated during oxidative stress are prothrombotic; however, the mechanisms by which oxidants induce thrombus formation is poorly understood. Protein disulfide isomerase (PDI) is a thiol isomerase that serves an important role in thrombus formation. It has a domain structure of a-b-b'-a', in which the aand a' domains are catalytic and the b and b' are substrate binding. A flexible x linker is between the b' and a'domains. PDI is uniquely sensitive to oxidative cysteine modification within the CGHC catalytic motif of its a and a'domains. Yet whether PDI cysteine modifications mediates thrombosis in an oxidative environment has not previously been studied. We hypothesized that oxidized PDI links oxidative stress to a prothrombotic phenotype through post-translational modification of proteins. We have previously shown that dyslipidemia promotes hydrogen peroxide generation from platelets and oxidizes proteins. Using hydrogen peroxide as a model oxidant, we found that oxidation of recombinant PDI promoted the loss of free thiols and inhibited reductase activity in a dose-dependent manner (IC50= 3.3 ± 0.12 µM). To understand how free thiols were lost, we used a benzothiazine-based nucleophilic probe, termed BTD, to label sulfenic acid. The transient cysteine sulfenic acid (S-OH) was detected by BTD labeling in wildtype PDI following exposure to hydrogen peroxide, but not in a PDI mutant in which all active site cysteines had been mutated to alanine. PDI exposure to oxidized lipoprotein particles (OxLDL) or 3-morpholinosydnonimine (SIN-1), a peroxynitrite donor, also promoted its sulfenylation. Using single cysteine mutants of PDI to identify the sulfenylation site, we found that Cys56 was preferentially sulfenylated as mutation of this cysteine prevented further labeling of the sulfenic acid probe. To assess whether interdomain interactions influenced sulfenylation, we evaluated BTD labeling in isolated fragments of PDI. Sulfenylation was identified in the a domain, consistent with Cys56 labeling, and was significantly enhanced in the ab fragment, implicating an interaction between the a and b domains in sulfenylation. No labeling was observed in an isolated b'xa' fragment. Further analysis of structural elements revealed that a conserved Arg120 within the a domain regulates Cys56 reactivity. Indeed, mutation of Arg120 to Ala prevented sulfenylation by peroxides compared to the wildtype control. Maleimide labeling showed that sulfenylated PDI is an intermediary that resolves into disulfided PDI. To determine whether this disulfided PDI promotes oxidase activity, we used a denatured and reduced RNAse that refolds when disulfides are transferred from oxidized PDI to the RNAse. PDI oxidized by hydrogen peroxide promoted RNAse refolding, whereas reduced PDI did not. A selective inhibitor of sulfenylation, arsenite, prevented RNAse refolding, indicating that hydrogen peroxide-induced oxidation of PDI proceeds through a sulfenic acid intermediate. Since PDI is secreted from cells, we evaluated whether activated cells release sulfenylated PDI using both human vein endothelial cells (HUVECs) and platelets. Sulfenylated PDI was increased in the cultured media of HUVECs stimulated with thrombin and in the releasate of platelets stimulated via PAR1 or glycoprotein VI. OxLDL exposure sensitizes platelets to activation by low doses of agonists. Inhibition of PDI using a neutralizing antibody inhibited augmentation of platelet aggregation by oxLDL, suggesting that oxidation of PDI by oxLDL promotes platelet activation. The ability of oxLDL to enhance the prothrombotic effect of PDI was tested in vivo in a murine model of laser-induced thrombus formation. Mice were infused with either control IgG or IgG directed at PDI, followed by the infusion of oxLDL. OxLDL significantly enhanced thrombus formation in this model. The effect of oxLDL was inhibited by anti-PDI IgG but not control IgG antibody or buffer, implicating PDI as an effector of oxLDL-augmented thrombus formation. In conclusion, our study demonstrates sulfenylation of PDI and shows that PDI sulfenylation retains PDI oxidase activity. Oxidation of PDI by oxidants such as oxLDL occurs in platelets and in endothelium and promotes thrombosis in the setting of oxidative stress.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助nssm采纳,获得10
1秒前
劳健龙完成签到 ,获得积分10
3秒前
6秒前
远山笑你完成签到 ,获得积分10
10秒前
CGDGD发布了新的文献求助10
10秒前
16秒前
21秒前
夏目由美完成签到 ,获得积分10
21秒前
善学以致用应助顺利秋灵采纳,获得10
23秒前
moyu123发布了新的文献求助10
25秒前
moiumuio完成签到,获得积分10
26秒前
陈JY完成签到 ,获得积分10
27秒前
28秒前
CGDGD完成签到,获得积分10
29秒前
李孟德对面完成签到,获得积分10
30秒前
30秒前
36秒前
GDD完成签到,获得积分10
40秒前
科研通AI2S应助11采纳,获得10
40秒前
41秒前
Chris03Ray发布了新的文献求助10
41秒前
乐乐应助GDD采纳,获得10
44秒前
44秒前
施凝完成签到,获得积分10
46秒前
viyo发布了新的文献求助30
48秒前
头孢西丁完成签到 ,获得积分10
1分钟前
Nichols完成签到,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
Akim应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
玉昆完成签到 ,获得积分10
1分钟前
顺利秋灵发布了新的文献求助10
1分钟前
成就的笑南完成签到 ,获得积分10
1分钟前
1分钟前
顾矜应助单纯芹菜采纳,获得10
1分钟前
ding应助sxm采纳,获得20
1分钟前
nssm发布了新的文献求助10
1分钟前
小六九完成签到 ,获得积分10
1分钟前
酷波er应助nssm采纳,获得10
2分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968367
求助须知:如何正确求助?哪些是违规求助? 3513238
关于积分的说明 11166892
捐赠科研通 3248558
什么是DOI,文献DOI怎么找? 1794268
邀请新用户注册赠送积分活动 874979
科研通“疑难数据库(出版商)”最低求助积分说明 804629