Machine learning for naval architecture, ocean and marine engineering

机器学习 海洋岩土工程 人工神经网络 人工智能 计算机科学 支持向量机 点(几何) 海洋工程 工程类 数学 几何学 岩土工程
作者
J. P. Panda
出处
期刊:Journal of marine science and technology [Springer Nature]
卷期号:28 (1): 1-26 被引量:12
标识
DOI:10.1007/s00773-022-00914-5
摘要

Machine learning (ML)-based techniques have found significant impact in many fields of engineering and sciences, where data-sets are available from experiments and high-fidelity numerical simulations. Those data-sets are generally utilised in a machine learning model to extract information about the underlying physics and derive functional relationships mapping input variables to target quantities of interest. Commonplace machine learning algorithms utilised in scientific machine learning (SciML) include neural networks, support vector machines, regression trees, random forests, etc. The focus of this article is to review the applications of ML in naval architecture, ocean and marine engineering problems; and identify priority directions of research. We discuss the applications of machine learning algorithms for different problems such as wave height prediction, calculation of wind loads on ships, damage detection of offshore platforms, calculation of ship-added resistance and various other applications in coastal and marine environments. The details of the data-sets including the source of data-sets utilised in the ML model development are included. The features used as the inputs to the ML models are presented in detail and finally, the methods employed in optimisation of the ML models were also discussed. Based on this comprehensive analysis, we point out future directions of research that may be fruitful for the application of ML to ocean and marine engineering problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
222发布了新的文献求助10
刚刚
娜娜完成签到 ,获得积分10
刚刚
Sun发布了新的文献求助10
1秒前
1秒前
1秒前
且歌且行发布了新的文献求助10
1秒前
2秒前
robust66发布了新的文献求助30
2秒前
桃子发布了新的文献求助10
3秒前
3秒前
动听千风完成签到 ,获得积分10
3秒前
wenyh发布了新的文献求助10
4秒前
4秒前
在水一方完成签到,获得积分10
5秒前
无花果应助莫西莫西采纳,获得10
6秒前
sabrina完成签到,获得积分10
6秒前
雾失楼台完成签到,获得积分10
6秒前
思源应助快乐的一刀采纳,获得10
6秒前
8秒前
外科医生完成签到,获得积分10
9秒前
FashionBoy应助Sun采纳,获得10
9秒前
桃子完成签到,获得积分10
9秒前
万能图书馆应助饱满秋采纳,获得10
10秒前
迟到虞姬发布了新的文献求助10
11秒前
小蘑菇应助小王同志采纳,获得10
12秒前
12秒前
大林完成签到,获得积分10
12秒前
12秒前
吴明轩完成签到,获得积分10
12秒前
Akim应助JusLovin采纳,获得10
12秒前
12秒前
14秒前
iuyol发布了新的文献求助10
15秒前
16秒前
16秒前
英俊的铭应助shinepat采纳,获得10
17秒前
WxChen完成签到,获得积分10
17秒前
迟到虞姬完成签到,获得积分10
17秒前
曾馨慧完成签到,获得积分10
18秒前
33完成签到 ,获得积分10
19秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
中国氢能技术发展路线图研究 500
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3168119
求助须知:如何正确求助?哪些是违规求助? 2819492
关于积分的说明 7926815
捐赠科研通 2479378
什么是DOI,文献DOI怎么找? 1320762
科研通“疑难数据库(出版商)”最低求助积分说明 632907
版权声明 602458