Machine learning for naval architecture, ocean and marine engineering

机器学习 海洋岩土工程 人工神经网络 人工智能 计算机科学 支持向量机 点(几何) 海洋工程 工程类 数学 几何学 岩土工程
作者
J. P. Panda
出处
期刊:Journal of marine science and technology [Springer Nature]
卷期号:28 (1): 1-26 被引量:30
标识
DOI:10.1007/s00773-022-00914-5
摘要

Machine learning (ML)-based techniques have found significant impact in many fields of engineering and sciences, where data-sets are available from experiments and high-fidelity numerical simulations. Those data-sets are generally utilised in a machine learning model to extract information about the underlying physics and derive functional relationships mapping input variables to target quantities of interest. Commonplace machine learning algorithms utilised in scientific machine learning (SciML) include neural networks, support vector machines, regression trees, random forests, etc. The focus of this article is to review the applications of ML in naval architecture, ocean and marine engineering problems; and identify priority directions of research. We discuss the applications of machine learning algorithms for different problems such as wave height prediction, calculation of wind loads on ships, damage detection of offshore platforms, calculation of ship-added resistance and various other applications in coastal and marine environments. The details of the data-sets including the source of data-sets utilised in the ML model development are included. The features used as the inputs to the ML models are presented in detail and finally, the methods employed in optimisation of the ML models were also discussed. Based on this comprehensive analysis, we point out future directions of research that may be fruitful for the application of ML to ocean and marine engineering problems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健应助yy采纳,获得10
刚刚
刚刚
生鱼安乐完成签到,获得积分10
1秒前
1秒前
1秒前
2秒前
Akim应助yangwang采纳,获得10
2秒前
2秒前
潇洒莞完成签到,获得积分10
2秒前
Sandy11完成签到,获得积分10
2秒前
3秒前
Minguk完成签到,获得积分10
3秒前
陈曦读研版完成签到 ,获得积分20
3秒前
思源应助深情的寒风采纳,获得10
3秒前
丧彪完成签到,获得积分10
3秒前
Akim应助charming采纳,获得10
3秒前
整齐飞烟完成签到,获得积分10
3秒前
粥粥应助yiwan采纳,获得10
4秒前
4秒前
tsuki完成签到,获得积分10
4秒前
打野速度发布了新的文献求助10
4秒前
4秒前
从容的文涛完成签到,获得积分10
5秒前
传统的涵瑶完成签到,获得积分10
5秒前
阿甘发布了新的文献求助10
5秒前
smottom应助堡主采纳,获得10
5秒前
潇洒莞发布了新的文献求助10
5秒前
青青发布了新的文献求助10
5秒前
K423完成签到,获得积分10
6秒前
g905910061完成签到,获得积分10
6秒前
繁华落幕发布了新的文献求助20
6秒前
整齐飞烟发布了新的文献求助10
7秒前
王五完成签到,获得积分10
7秒前
kokenbi完成签到,获得积分20
8秒前
8秒前
8秒前
8秒前
8秒前
8秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629618
求助须知:如何正确求助?哪些是违规求助? 4720333
关于积分的说明 14970297
捐赠科研通 4787673
什么是DOI,文献DOI怎么找? 2556435
邀请新用户注册赠送积分活动 1517561
关于科研通互助平台的介绍 1478251