Fault diagnosis based on gated recurrent unit network with attention mechanism and transfer learning under few samples in nuclear power plants

计算机科学 断层(地质) 卷积神经网络 人工智能 深度学习 人工神经网络 核能 学习迁移 支持向量机 机器学习 模式识别(心理学) 任务(项目管理) 样品(材料) 数据挖掘 工程类 地震学 地质学 化学 生物 系统工程 色谱法 生态学
作者
Gensheng Qian,Jingquan Liu
出处
期刊:Progress in Nuclear Energy [Elsevier]
卷期号:155: 104502-104502 被引量:26
标识
DOI:10.1016/j.pnucene.2022.104502
摘要

Fault diagnosis (FD) of rotating machines is critical to the safety and economic operation of nuclear power plants (NPPs). Gated Recurrent Unit (GRU) is a gating mechanism in recurrent neural network and is a deep learning model that excels in processing sequential information and can be used to learn potential fault features in the condition monitoring data for FD. However, lack of sufficient fault samples (i.e., few samples) in NPPs prevents the GRU network from being adequately trained, resulting in poor performance. This study proposes a new GRU network combined with attention mechanism (AM) and transfer learning (TL), called GRU-AM-TL method. The attention layer is introduced to adaptively assign different weights to the extracted features for discrepant processing and enhancing focus on valuable information. The TL strategy tries to make full use of diagnosis knowledge learned from relevant fault datasets under different operating conditions, different machines or different fault severity for improving new diagnosis task under few samples. The specific FD target is to identify the fault nature (location, size or severity) by pattern recognition. Bearing, gearbox and NPP simulated fault datasets are used to validate the proposed method. Case study shows that the AM and TL strategy can help GRU network improve diagnosis accuracy under few sample scenarios. Moreover, the proposed GRU-AM-TL method can achieve the best performance in all test cases compared with GRU-based methods and other classical methods, such as convolutional neural network, support vector machine and random forest, showing good FD advantage in NPPs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
SciGPT应助Schmidt采纳,获得10
刚刚
英姑应助外向跳跳糖采纳,获得10
1秒前
可爱的函函应助勿扰采纳,获得10
1秒前
彭于晏应助勿扰采纳,获得10
1秒前
Plateau发布了新的文献求助10
1秒前
xiaoyao发布了新的文献求助10
1秒前
rocket完成签到,获得积分10
2秒前
无语的千儿完成签到,获得积分10
2秒前
李团长完成签到 ,获得积分10
3秒前
Wcy发布了新的文献求助10
3秒前
3秒前
倒霉的芒果完成签到 ,获得积分10
4秒前
SciGPT应助semigreen采纳,获得10
4秒前
杨洋发布了新的文献求助10
4秒前
5秒前
Komorebi发布了新的文献求助10
5秒前
5秒前
落后的盼秋完成签到,获得积分10
5秒前
柏林寒冬应助拾起采纳,获得10
6秒前
八一发布了新的文献求助10
6秒前
6秒前
思源应助王大力采纳,获得10
6秒前
6秒前
6秒前
Evander发布了新的文献求助10
6秒前
7秒前
ccm应助geold采纳,获得10
7秒前
FashionBoy应助阿撕匹林采纳,获得10
8秒前
Zx_1993应助尚白swqd采纳,获得10
8秒前
赵颖完成签到 ,获得积分10
8秒前
8秒前
gb完成签到 ,获得积分10
9秒前
遨游的人完成签到,获得积分10
9秒前
活力的念蕾完成签到,获得积分10
10秒前
Criminology34应助镇痛蚊子采纳,获得10
10秒前
10秒前
freya发布了新的文献求助80
10秒前
寻上发布了新的文献求助10
10秒前
10秒前
高分求助中
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Objective or objectionable? Ideological aspects of dictionaries 360
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5581693
求助须知:如何正确求助?哪些是违规求助? 4665895
关于积分的说明 14759417
捐赠科研通 4607833
什么是DOI,文献DOI怎么找? 2528395
邀请新用户注册赠送积分活动 1497666
关于科研通互助平台的介绍 1466553