Fault diagnosis based on gated recurrent unit network with attention mechanism and transfer learning under few samples in nuclear power plants

计算机科学 断层(地质) 卷积神经网络 人工智能 深度学习 人工神经网络 核能 学习迁移 支持向量机 机器学习 模式识别(心理学) 任务(项目管理) 样品(材料) 数据挖掘 工程类 地震学 地质学 化学 生物 系统工程 色谱法 生态学
作者
Gensheng Qian,Jingquan Liu
出处
期刊:Progress in Nuclear Energy [Elsevier BV]
卷期号:155: 104502-104502 被引量:26
标识
DOI:10.1016/j.pnucene.2022.104502
摘要

Fault diagnosis (FD) of rotating machines is critical to the safety and economic operation of nuclear power plants (NPPs). Gated Recurrent Unit (GRU) is a gating mechanism in recurrent neural network and is a deep learning model that excels in processing sequential information and can be used to learn potential fault features in the condition monitoring data for FD. However, lack of sufficient fault samples (i.e., few samples) in NPPs prevents the GRU network from being adequately trained, resulting in poor performance. This study proposes a new GRU network combined with attention mechanism (AM) and transfer learning (TL), called GRU-AM-TL method. The attention layer is introduced to adaptively assign different weights to the extracted features for discrepant processing and enhancing focus on valuable information. The TL strategy tries to make full use of diagnosis knowledge learned from relevant fault datasets under different operating conditions, different machines or different fault severity for improving new diagnosis task under few samples. The specific FD target is to identify the fault nature (location, size or severity) by pattern recognition. Bearing, gearbox and NPP simulated fault datasets are used to validate the proposed method. Case study shows that the AM and TL strategy can help GRU network improve diagnosis accuracy under few sample scenarios. Moreover, the proposed GRU-AM-TL method can achieve the best performance in all test cases compared with GRU-based methods and other classical methods, such as convolutional neural network, support vector machine and random forest, showing good FD advantage in NPPs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
微笑的依凝完成签到,获得积分10
1秒前
book完成签到,获得积分10
1秒前
整齐思天完成签到,获得积分10
1秒前
2秒前
2秒前
shinn发布了新的文献求助10
2秒前
Lucas应助Roseaiwade采纳,获得10
3秒前
好好毕业完成签到,获得积分20
4秒前
风趣的胜应助zj采纳,获得10
5秒前
英姑应助无梦为安采纳,获得10
5秒前
6秒前
科研泥猴桃完成签到,获得积分10
7秒前
梁三柏应助哭泣的凡英采纳,获得10
7秒前
7秒前
苗条的小肥羊完成签到,获得积分10
8秒前
9秒前
研友_LkYoRZ完成签到,获得积分10
11秒前
11秒前
ding应助小新没蜡笔采纳,获得10
12秒前
12秒前
13秒前
13秒前
13秒前
量子星尘发布了新的文献求助10
14秒前
14秒前
14秒前
Roseaiwade发布了新的文献求助10
15秒前
羡鱼完成签到,获得积分10
16秒前
A2QD发布了新的文献求助10
16秒前
17秒前
18秒前
71发布了新的文献求助20
18秒前
18秒前
TQ完成签到,获得积分10
18秒前
彭于晏应助可耐的青雪采纳,获得10
19秒前
思源应助让地球种满香菜采纳,获得10
20秒前
33应助戴好头盔搞科研采纳,获得10
20秒前
hyx9504发布了新的文献求助10
21秒前
兔子里的乌龟完成签到 ,获得积分10
21秒前
香蕉觅云应助锅锅采纳,获得10
21秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Effective Learning and Mental Wellbeing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3975165
求助须知:如何正确求助?哪些是违规求助? 3519595
关于积分的说明 11198781
捐赠科研通 3255912
什么是DOI,文献DOI怎么找? 1798001
邀请新用户注册赠送积分活动 877343
科研通“疑难数据库(出版商)”最低求助积分说明 806298