Fault diagnosis based on gated recurrent unit network with attention mechanism and transfer learning under few samples in nuclear power plants

计算机科学 断层(地质) 卷积神经网络 人工智能 深度学习 人工神经网络 核能 学习迁移 支持向量机 机器学习 模式识别(心理学) 任务(项目管理) 样品(材料) 数据挖掘 工程类 地震学 地质学 化学 生物 系统工程 色谱法 生态学
作者
Gensheng Qian,Jingquan Liu
出处
期刊:Progress in Nuclear Energy [Elsevier]
卷期号:155: 104502-104502 被引量:26
标识
DOI:10.1016/j.pnucene.2022.104502
摘要

Fault diagnosis (FD) of rotating machines is critical to the safety and economic operation of nuclear power plants (NPPs). Gated Recurrent Unit (GRU) is a gating mechanism in recurrent neural network and is a deep learning model that excels in processing sequential information and can be used to learn potential fault features in the condition monitoring data for FD. However, lack of sufficient fault samples (i.e., few samples) in NPPs prevents the GRU network from being adequately trained, resulting in poor performance. This study proposes a new GRU network combined with attention mechanism (AM) and transfer learning (TL), called GRU-AM-TL method. The attention layer is introduced to adaptively assign different weights to the extracted features for discrepant processing and enhancing focus on valuable information. The TL strategy tries to make full use of diagnosis knowledge learned from relevant fault datasets under different operating conditions, different machines or different fault severity for improving new diagnosis task under few samples. The specific FD target is to identify the fault nature (location, size or severity) by pattern recognition. Bearing, gearbox and NPP simulated fault datasets are used to validate the proposed method. Case study shows that the AM and TL strategy can help GRU network improve diagnosis accuracy under few sample scenarios. Moreover, the proposed GRU-AM-TL method can achieve the best performance in all test cases compared with GRU-based methods and other classical methods, such as convolutional neural network, support vector machine and random forest, showing good FD advantage in NPPs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助moonlight采纳,获得10
刚刚
wop111应助科研通管家采纳,获得30
刚刚
丘比特应助koi采纳,获得10
刚刚
萝卜应助科研通管家采纳,获得10
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
烟花应助科研通管家采纳,获得10
刚刚
萝卜应助科研通管家采纳,获得10
刚刚
烟花应助科研通管家采纳,获得10
刚刚
所所应助科研通管家采纳,获得20
刚刚
刚刚
刚刚
所所应助科研通管家采纳,获得20
刚刚
刚刚
刚刚
沉默的倔驴应助我是AY采纳,获得10
刚刚
刚刚
刚刚
小马甲应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
活泼的爱德华德应助nkh采纳,获得10
刚刚
Hello应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
刚刚
刚刚
刚刚
1秒前
邵大王发布了新的文献求助10
1秒前
BowieHuang应助科研通管家采纳,获得10
1秒前
丘比特应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
Lucas应助科研通管家采纳,获得10
1秒前
童书兰完成签到,获得积分20
1秒前
善学以致用应助ttm采纳,获得10
1秒前
1秒前
CY完成签到,获得积分10
1秒前
book发布了新的文献求助10
1秒前
2秒前
2秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5759707
求助须知:如何正确求助?哪些是违规求助? 5521712
关于积分的说明 15395175
捐赠科研通 4896734
什么是DOI,文献DOI怎么找? 2633863
邀请新用户注册赠送积分活动 1581925
关于科研通互助平台的介绍 1537410