Fault diagnosis based on gated recurrent unit network with attention mechanism and transfer learning under few samples in nuclear power plants

计算机科学 断层(地质) 卷积神经网络 人工智能 深度学习 人工神经网络 核能 学习迁移 支持向量机 机器学习 模式识别(心理学) 任务(项目管理) 样品(材料) 数据挖掘 工程类 地震学 地质学 化学 生物 系统工程 色谱法 生态学
作者
Gensheng Qian,Jingquan Liu
出处
期刊:Progress in Nuclear Energy [Elsevier BV]
卷期号:155: 104502-104502 被引量:26
标识
DOI:10.1016/j.pnucene.2022.104502
摘要

Fault diagnosis (FD) of rotating machines is critical to the safety and economic operation of nuclear power plants (NPPs). Gated Recurrent Unit (GRU) is a gating mechanism in recurrent neural network and is a deep learning model that excels in processing sequential information and can be used to learn potential fault features in the condition monitoring data for FD. However, lack of sufficient fault samples (i.e., few samples) in NPPs prevents the GRU network from being adequately trained, resulting in poor performance. This study proposes a new GRU network combined with attention mechanism (AM) and transfer learning (TL), called GRU-AM-TL method. The attention layer is introduced to adaptively assign different weights to the extracted features for discrepant processing and enhancing focus on valuable information. The TL strategy tries to make full use of diagnosis knowledge learned from relevant fault datasets under different operating conditions, different machines or different fault severity for improving new diagnosis task under few samples. The specific FD target is to identify the fault nature (location, size or severity) by pattern recognition. Bearing, gearbox and NPP simulated fault datasets are used to validate the proposed method. Case study shows that the AM and TL strategy can help GRU network improve diagnosis accuracy under few sample scenarios. Moreover, the proposed GRU-AM-TL method can achieve the best performance in all test cases compared with GRU-based methods and other classical methods, such as convolutional neural network, support vector machine and random forest, showing good FD advantage in NPPs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小满未满完成签到,获得积分10
刚刚
祈使句发布了新的文献求助10
刚刚
1秒前
1秒前
guangshuang完成签到 ,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
小明完成签到,获得积分10
2秒前
einuo发布了新的文献求助10
2秒前
SYLH应助111采纳,获得10
3秒前
hh发布了新的文献求助10
6秒前
羊羊完成签到,获得积分10
6秒前
卡卡罗特先森完成签到 ,获得积分10
7秒前
朽木完成签到 ,获得积分10
9秒前
9秒前
fanyueyue应助111采纳,获得10
11秒前
11秒前
11秒前
kcmat发布了新的文献求助10
12秒前
hh完成签到,获得积分10
13秒前
Philadelphus发布了新的文献求助10
14秒前
einuo完成签到,获得积分10
14秒前
AKYDXS完成签到,获得积分10
17秒前
昏睡的蟠桃应助Llllll采纳,获得200
17秒前
科研通AI2S应助hao采纳,获得10
17秒前
18秒前
18秒前
香蕉觅云应助阿湫采纳,获得10
19秒前
星辰大海应助星辰采纳,获得10
19秒前
阿卡宁完成签到,获得积分10
19秒前
lzw完成签到 ,获得积分10
19秒前
沉静烧仙草完成签到,获得积分20
20秒前
烟花应助嘉嘉琦采纳,获得10
20秒前
隐形曼青应助科研通管家采纳,获得10
20秒前
Hello应助科研通管家采纳,获得10
21秒前
Ava应助科研通管家采纳,获得10
21秒前
上官若男应助科研通管家采纳,获得10
21秒前
21秒前
赘婿应助科研通管家采纳,获得10
21秒前
烟花应助科研通管家采纳,获得10
21秒前
FashionBoy应助科研通管家采纳,获得10
21秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038524
求助须知:如何正确求助?哪些是违规求助? 3576221
关于积分的说明 11374737
捐赠科研通 3305912
什么是DOI,文献DOI怎么找? 1819354
邀请新用户注册赠送积分活动 892688
科研通“疑难数据库(出版商)”最低求助积分说明 815048