Fault diagnosis based on gated recurrent unit network with attention mechanism and transfer learning under few samples in nuclear power plants

计算机科学 断层(地质) 卷积神经网络 人工智能 深度学习 人工神经网络 核能 学习迁移 支持向量机 机器学习 模式识别(心理学) 任务(项目管理) 样品(材料) 数据挖掘 工程类 地震学 地质学 化学 生物 系统工程 色谱法 生态学
作者
Gensheng Qian,Jingquan Liu
出处
期刊:Progress in Nuclear Energy [Elsevier]
卷期号:155: 104502-104502 被引量:26
标识
DOI:10.1016/j.pnucene.2022.104502
摘要

Fault diagnosis (FD) of rotating machines is critical to the safety and economic operation of nuclear power plants (NPPs). Gated Recurrent Unit (GRU) is a gating mechanism in recurrent neural network and is a deep learning model that excels in processing sequential information and can be used to learn potential fault features in the condition monitoring data for FD. However, lack of sufficient fault samples (i.e., few samples) in NPPs prevents the GRU network from being adequately trained, resulting in poor performance. This study proposes a new GRU network combined with attention mechanism (AM) and transfer learning (TL), called GRU-AM-TL method. The attention layer is introduced to adaptively assign different weights to the extracted features for discrepant processing and enhancing focus on valuable information. The TL strategy tries to make full use of diagnosis knowledge learned from relevant fault datasets under different operating conditions, different machines or different fault severity for improving new diagnosis task under few samples. The specific FD target is to identify the fault nature (location, size or severity) by pattern recognition. Bearing, gearbox and NPP simulated fault datasets are used to validate the proposed method. Case study shows that the AM and TL strategy can help GRU network improve diagnosis accuracy under few sample scenarios. Moreover, the proposed GRU-AM-TL method can achieve the best performance in all test cases compared with GRU-based methods and other classical methods, such as convolutional neural network, support vector machine and random forest, showing good FD advantage in NPPs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lyj123发布了新的文献求助10
1秒前
易安发布了新的文献求助10
1秒前
YMY完成签到,获得积分10
1秒前
煦白发布了新的文献求助10
1秒前
Haonan完成签到,获得积分10
2秒前
2秒前
高大的曼寒完成签到,获得积分20
3秒前
张张完成签到,获得积分20
3秒前
完美世界应助duming采纳,获得10
4秒前
ZXB完成签到,获得积分10
5秒前
坚强幼晴完成签到,获得积分10
6秒前
wwl发布了新的文献求助10
6秒前
搜集达人应助金也采纳,获得10
7秒前
7秒前
10秒前
12秒前
在水一方应助漂亮的不言采纳,获得10
12秒前
毛豆应助呆瓜采纳,获得10
13秒前
毛豆应助呆瓜采纳,获得10
13秒前
科研通AI2S应助呆瓜采纳,获得10
13秒前
毛豆应助呆瓜采纳,获得10
13秒前
共享精神应助呆瓜采纳,获得10
13秒前
清新的夜蕾完成签到,获得积分10
13秒前
如意枫叶完成签到,获得积分10
13秒前
即将高产sci完成签到,获得积分10
14秒前
qwe发布了新的文献求助10
15秒前
日月草完成签到,获得积分10
15秒前
16秒前
如意枫叶发布了新的文献求助10
17秒前
脑洞疼应助bliyaa采纳,获得10
17秒前
糖糖完成签到 ,获得积分10
17秒前
挚zhi发布了新的文献求助10
18秒前
斯文败类应助科研通管家采纳,获得10
18秒前
充电宝应助科研通管家采纳,获得10
18秒前
18秒前
脑洞疼应助科研通管家采纳,获得30
18秒前
思源应助科研通管家采纳,获得10
18秒前
18秒前
18秒前
科研通AI2S应助科研通管家采纳,获得10
19秒前
高分求助中
Востребованный временем 2500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
The Oxford Handbook of Educational Psychology 600
Mantodea of the World: Species Catalog Andrew M 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
Development and Industrialization of Stereoregular Polynorbornenes 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3421494
求助须知:如何正确求助?哪些是违规求助? 3022225
关于积分的说明 8899644
捐赠科研通 2709464
什么是DOI,文献DOI怎么找? 1485778
科研通“疑难数据库(出版商)”最低求助积分说明 686900
邀请新用户注册赠送积分活动 681980