Fault diagnosis based on gated recurrent unit network with attention mechanism and transfer learning under few samples in nuclear power plants

计算机科学 断层(地质) 卷积神经网络 人工智能 深度学习 人工神经网络 核能 学习迁移 支持向量机 机器学习 模式识别(心理学) 任务(项目管理) 样品(材料) 数据挖掘 工程类 地震学 地质学 化学 生物 系统工程 色谱法 生态学
作者
Gensheng Qian,Jingquan Liu
出处
期刊:Progress in Nuclear Energy [Elsevier BV]
卷期号:155: 104502-104502 被引量:26
标识
DOI:10.1016/j.pnucene.2022.104502
摘要

Fault diagnosis (FD) of rotating machines is critical to the safety and economic operation of nuclear power plants (NPPs). Gated Recurrent Unit (GRU) is a gating mechanism in recurrent neural network and is a deep learning model that excels in processing sequential information and can be used to learn potential fault features in the condition monitoring data for FD. However, lack of sufficient fault samples (i.e., few samples) in NPPs prevents the GRU network from being adequately trained, resulting in poor performance. This study proposes a new GRU network combined with attention mechanism (AM) and transfer learning (TL), called GRU-AM-TL method. The attention layer is introduced to adaptively assign different weights to the extracted features for discrepant processing and enhancing focus on valuable information. The TL strategy tries to make full use of diagnosis knowledge learned from relevant fault datasets under different operating conditions, different machines or different fault severity for improving new diagnosis task under few samples. The specific FD target is to identify the fault nature (location, size or severity) by pattern recognition. Bearing, gearbox and NPP simulated fault datasets are used to validate the proposed method. Case study shows that the AM and TL strategy can help GRU network improve diagnosis accuracy under few sample scenarios. Moreover, the proposed GRU-AM-TL method can achieve the best performance in all test cases compared with GRU-based methods and other classical methods, such as convolutional neural network, support vector machine and random forest, showing good FD advantage in NPPs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
河马完成签到,获得积分10
1秒前
单身的钧完成签到,获得积分10
1秒前
2秒前
拉拉霍霍完成签到,获得积分10
2秒前
爱科学完成签到 ,获得积分10
2秒前
Owen应助缥缈八宝粥采纳,获得10
2秒前
称心语风完成签到,获得积分10
3秒前
lin应助十二采纳,获得10
3秒前
3秒前
smoli完成签到 ,获得积分10
3秒前
罗小甜发布了新的文献求助10
3秒前
ayuelei发布了新的文献求助10
3秒前
albert Tesla完成签到,获得积分10
4秒前
4秒前
路途遥远完成签到,获得积分10
4秒前
5秒前
小李发布了新的文献求助10
6秒前
隐形曼青应助DXXX采纳,获得10
6秒前
6秒前
6秒前
7秒前
无花果应助xxxxfiona采纳,获得10
8秒前
在水一方应助IanYoung71采纳,获得10
8秒前
失眠迎松发布了新的文献求助30
8秒前
8秒前
啦啦啦完成签到,获得积分20
8秒前
瓜子发布了新的文献求助20
8秒前
思源应助呆萌代桃采纳,获得10
9秒前
kidult完成签到,获得积分10
11秒前
今后应助抛向天空采纳,获得10
11秒前
学术裁缝发布了新的文献求助10
11秒前
12秒前
烈日骄阳完成签到,获得积分10
12秒前
12秒前
我是老大应助繁星若尘采纳,获得10
13秒前
星辰大海应助Galaxy采纳,获得10
13秒前
研友_Zzy1pn发布了新的文献求助10
13秒前
陈先生完成签到,获得积分10
15秒前
英吉利25发布了新的文献求助10
15秒前
大方仰发布了新的文献求助20
15秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3969458
求助须知:如何正确求助?哪些是违规求助? 3514286
关于积分的说明 11173363
捐赠科研通 3249652
什么是DOI,文献DOI怎么找? 1794948
邀请新用户注册赠送积分活动 875501
科研通“疑难数据库(出版商)”最低求助积分说明 804836