Fault diagnosis based on gated recurrent unit network with attention mechanism and transfer learning under few samples in nuclear power plants

计算机科学 断层(地质) 卷积神经网络 人工智能 深度学习 人工神经网络 核能 学习迁移 支持向量机 机器学习 模式识别(心理学) 任务(项目管理) 样品(材料) 数据挖掘 工程类 地震学 地质学 化学 生物 系统工程 色谱法 生态学
作者
Gensheng Qian,Jingquan Liu
出处
期刊:Progress in Nuclear Energy [Elsevier]
卷期号:155: 104502-104502 被引量:26
标识
DOI:10.1016/j.pnucene.2022.104502
摘要

Fault diagnosis (FD) of rotating machines is critical to the safety and economic operation of nuclear power plants (NPPs). Gated Recurrent Unit (GRU) is a gating mechanism in recurrent neural network and is a deep learning model that excels in processing sequential information and can be used to learn potential fault features in the condition monitoring data for FD. However, lack of sufficient fault samples (i.e., few samples) in NPPs prevents the GRU network from being adequately trained, resulting in poor performance. This study proposes a new GRU network combined with attention mechanism (AM) and transfer learning (TL), called GRU-AM-TL method. The attention layer is introduced to adaptively assign different weights to the extracted features for discrepant processing and enhancing focus on valuable information. The TL strategy tries to make full use of diagnosis knowledge learned from relevant fault datasets under different operating conditions, different machines or different fault severity for improving new diagnosis task under few samples. The specific FD target is to identify the fault nature (location, size or severity) by pattern recognition. Bearing, gearbox and NPP simulated fault datasets are used to validate the proposed method. Case study shows that the AM and TL strategy can help GRU network improve diagnosis accuracy under few sample scenarios. Moreover, the proposed GRU-AM-TL method can achieve the best performance in all test cases compared with GRU-based methods and other classical methods, such as convolutional neural network, support vector machine and random forest, showing good FD advantage in NPPs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一颗橙子CCC完成签到,获得积分10
刚刚
慕青应助宋依依采纳,获得10
刚刚
刚刚
1秒前
2秒前
小马甲应助六尺巷采纳,获得10
2秒前
2秒前
4秒前
4秒前
6w6发布了新的文献求助10
5秒前
大个应助朴实的南露采纳,获得10
5秒前
悦耳冰蓝发布了新的文献求助10
5秒前
ocean发布了新的文献求助20
6秒前
6秒前
和谐煎饼完成签到,获得积分20
7秒前
7秒前
8秒前
8秒前
桐桐应助MT采纳,获得10
9秒前
酷波er应助MT采纳,获得10
9秒前
充电宝应助MT采纳,获得10
9秒前
ding应助MT采纳,获得10
9秒前
LXdjlx发布了新的文献求助10
9秒前
10秒前
10秒前
阿芙乐尔完成签到 ,获得积分10
11秒前
11秒前
wanci应助snowy采纳,获得10
11秒前
aaa123完成签到,获得积分10
12秒前
kk发布了新的文献求助10
12秒前
爆米花应助六尺巷采纳,获得10
13秒前
14秒前
飘逸踏歌发布了新的文献求助10
14秒前
下雨完成签到,获得积分10
14秒前
15秒前
文艺过客发布了新的文献求助10
15秒前
杭雨雪发布了新的文献求助10
15秒前
15秒前
yu发布了新的文献求助10
16秒前
SciGPT应助秋星人采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637437
求助须知:如何正确求助?哪些是违规求助? 4743337
关于积分的说明 14999087
捐赠科研通 4795612
什么是DOI,文献DOI怎么找? 2562091
邀请新用户注册赠送积分活动 1521554
关于科研通互助平台的介绍 1481559