Fault diagnosis based on gated recurrent unit network with attention mechanism and transfer learning under few samples in nuclear power plants

计算机科学 断层(地质) 卷积神经网络 人工智能 深度学习 人工神经网络 核能 学习迁移 支持向量机 机器学习 模式识别(心理学) 任务(项目管理) 样品(材料) 数据挖掘 工程类 地震学 地质学 化学 生物 系统工程 色谱法 生态学
作者
Gensheng Qian,Jingquan Liu
出处
期刊:Progress in Nuclear Energy [Elsevier BV]
卷期号:155: 104502-104502 被引量:26
标识
DOI:10.1016/j.pnucene.2022.104502
摘要

Fault diagnosis (FD) of rotating machines is critical to the safety and economic operation of nuclear power plants (NPPs). Gated Recurrent Unit (GRU) is a gating mechanism in recurrent neural network and is a deep learning model that excels in processing sequential information and can be used to learn potential fault features in the condition monitoring data for FD. However, lack of sufficient fault samples (i.e., few samples) in NPPs prevents the GRU network from being adequately trained, resulting in poor performance. This study proposes a new GRU network combined with attention mechanism (AM) and transfer learning (TL), called GRU-AM-TL method. The attention layer is introduced to adaptively assign different weights to the extracted features for discrepant processing and enhancing focus on valuable information. The TL strategy tries to make full use of diagnosis knowledge learned from relevant fault datasets under different operating conditions, different machines or different fault severity for improving new diagnosis task under few samples. The specific FD target is to identify the fault nature (location, size or severity) by pattern recognition. Bearing, gearbox and NPP simulated fault datasets are used to validate the proposed method. Case study shows that the AM and TL strategy can help GRU network improve diagnosis accuracy under few sample scenarios. Moreover, the proposed GRU-AM-TL method can achieve the best performance in all test cases compared with GRU-based methods and other classical methods, such as convolutional neural network, support vector machine and random forest, showing good FD advantage in NPPs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SRY完成签到,获得积分10
刚刚
可爱的从寒完成签到,获得积分10
1秒前
1秒前
Hello应助burger采纳,获得10
1秒前
1111发布了新的文献求助20
2秒前
后夜完成签到,获得积分10
2秒前
橙熟完成签到,获得积分10
2秒前
2秒前
2秒前
浅眸流年完成签到,获得积分10
3秒前
缥缈的绿兰完成签到,获得积分10
3秒前
差点长成帅哥完成签到,获得积分10
4秒前
找呀找完成签到,获得积分10
4秒前
保奔发布了新的文献求助10
4秒前
4秒前
4秒前
1111完成签到,获得积分10
4秒前
QC完成签到,获得积分10
4秒前
楚明允完成签到 ,获得积分10
5秒前
SciGPT应助bobo采纳,获得10
5秒前
5秒前
完美世界应助ccccd采纳,获得10
5秒前
6秒前
xiaoxiao完成签到,获得积分10
7秒前
SRY发布了新的文献求助10
7秒前
迷了路的猫完成签到,获得积分10
8秒前
烟花应助胡立杰采纳,获得10
8秒前
琂当归完成签到,获得积分10
8秒前
小药丸包饺子应助Oil采纳,获得10
9秒前
刘硕发布了新的文献求助10
9秒前
10秒前
种太阳完成签到 ,获得积分10
10秒前
10秒前
浪子发布了新的文献求助20
10秒前
帅气的机器猫完成签到,获得积分10
10秒前
怕黑的班完成签到,获得积分10
11秒前
蜡笔小新新完成签到,获得积分10
11秒前
12秒前
ykiiii完成签到,获得积分10
14秒前
忙碌的数学人完成签到,获得积分10
14秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
TOWARD A HISTORY OF THE PALEOZOIC ASTEROIDEA (ECHINODERMATA) 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Handbook of Social and Emotional Learning 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5118837
求助须知:如何正确求助?哪些是违规求助? 4324693
关于积分的说明 13473527
捐赠科研通 4157793
什么是DOI,文献DOI怎么找? 2278607
邀请新用户注册赠送积分活动 1280375
关于科研通互助平台的介绍 1219167