Impact of Tides and Surges on Fluvial Floods in Coastal Regions

风暴潮 台风 大洪水 河流 海水 环境科学 洪水(心理学) 水文学(农业) 浪涌 电流(流体) 沿海洪水 水位 海洋学 地质学 海平面上升 风暴 气候变化 构造盆地 地貌学 地理 心理学 岩土工程 地图学 考古 心理治疗师
作者
Huidi Liang,Xudong Zhou
出处
期刊:Remote Sensing [MDPI AG]
卷期号:14 (22): 5779-5779 被引量:10
标识
DOI:10.3390/rs14225779
摘要

Fluvial floods in coastal areas are affected by tides and storm surges, while the impact is seldom quantified because the dynamics of seawater levels are often not represented in river routing models. This study established a model framework by coupling a surge model with a global hydrodynamic model at a higher spatiotemporal resolution than previous studies so that flood processes affected by seawater level fluctuation in small river basins can be investigated. Model implementation in Zhejiang Province, China, shows that the integration of dynamic seawater levels increases the stress of flooding along the Zhejiang coasts. The ocean effect varies in space, as it is much stronger in northern Zhejiang because of the lower landform and strong tidal amplification, while the mountainous rivers in southern Zhejiang are dominated by river flow regimes. Typhoon Lekima resulted in compound flood events (i.e., rainfall-induced riverine flood, tides, and surges), during which the maximum water level at the outlet of Qiantang River was 0.80 m in the default model settings with a constant downstream seawater level (i.e., 0 m), while it increased to 2.34 m (or 2.48 m) when tides (or tides and surges) were considered. The maximum increase due to tides and surges was 2.09 m and 1.45 m, respectively, while the maximum increase did not match the time of the flood peak. This mismatching indicates the need to consider different processes in physical models rather than linearly summing up different extreme water levels (i.e., river flood, tide, and surge) found in previous studies. The model framework integrating various flow processes will help to prevent risks of compound events in coastal cities in practical and future projections under different scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
柏忆南完成签到 ,获得积分10
刚刚
li发布了新的文献求助10
刚刚
dldddz发布了新的文献求助10
刚刚
jimmy完成签到,获得积分10
刚刚
田様应助侦察兵采纳,获得10
刚刚
鑫渊完成签到,获得积分10
刚刚
天冷了hhhdh完成签到,获得积分10
1秒前
ting完成签到,获得积分10
1秒前
微笑完成签到,获得积分10
1秒前
可爱的函函应助西宁阿采纳,获得30
2秒前
蓝莓松饼发布了新的文献求助10
2秒前
3秒前
哈哈发布了新的文献求助10
3秒前
高高发布了新的文献求助10
3秒前
一拳一个小欧阳完成签到 ,获得积分10
3秒前
明雨天地完成签到,获得积分10
3秒前
deathmask完成签到 ,获得积分10
3秒前
老实志泽完成签到,获得积分20
4秒前
4秒前
4秒前
4秒前
hata完成签到,获得积分10
4秒前
Pangsj完成签到,获得积分10
5秒前
5秒前
青蛙旅行完成签到 ,获得积分10
5秒前
FashionBoy应助科研通管家采纳,获得10
5秒前
小蘑菇应助科研通管家采纳,获得10
5秒前
小马甲应助科研通管家采纳,获得10
5秒前
Orange应助科研通管家采纳,获得10
6秒前
小马甲应助mimi采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
英姑应助科研通管家采纳,获得10
6秒前
雪白问兰应助科研通管家采纳,获得30
6秒前
汉堡包应助科研通管家采纳,获得10
6秒前
zzzzzz应助科研通管家采纳,获得20
6秒前
6秒前
爆米花应助科研通管家采纳,获得10
6秒前
sidegate应助科研通管家采纳,获得10
6秒前
prosperp应助科研通管家采纳,获得10
6秒前
香蕉觅云应助科研通管家采纳,获得10
6秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672