已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Physics-Informed Machine Learning: A Survey on Problems, Methods and Applications

人工智能 机器学习 计算机科学 领域(数学) 强化学习 推论 领域(数学分析) 物理系统 算法学习理论 主动学习(机器学习) 物理定律 代表(政治) 数据科学 数学 物理 数学分析 政治 量子力学 法学 纯数学 政治学
作者
Zhongkai Hao,Songming Liu,Yichi Zhang,Ying Cui,Yong Feng,Hang Su,Jun Zhu
出处
期刊:Cornell University - arXiv 被引量:1
标识
DOI:10.48550/arxiv.2211.08064
摘要

Recent advances of data-driven machine learning have revolutionized fields like computer vision, reinforcement learning, and many scientific and engineering domains. In many real-world and scientific problems, systems that generate data are governed by physical laws. Recent work shows that it provides potential benefits for machine learning models by incorporating the physical prior and collected data, which makes the intersection of machine learning and physics become a prevailing paradigm. By integrating the data and mathematical physics models seamlessly, it can guide the machine learning model towards solutions that are physically plausible, improving accuracy and efficiency even in uncertain and high-dimensional contexts. In this survey, we present this learning paradigm called Physics-Informed Machine Learning (PIML) which is to build a model that leverages empirical data and available physical prior knowledge to improve performance on a set of tasks that involve a physical mechanism. We systematically review the recent development of physics-informed machine learning from three perspectives of machine learning tasks, representation of physical prior, and methods for incorporating physical prior. We also propose several important open research problems based on the current trends in the field. We argue that encoding different forms of physical prior into model architectures, optimizers, inference algorithms, and significant domain-specific applications like inverse engineering design and robotic control is far from being fully explored in the field of physics-informed machine learning. We believe that the interdisciplinary research of physics-informed machine learning will significantly propel research progress, foster the creation of more effective machine learning models, and also offer invaluable assistance in addressing long-standing problems in related disciplines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
干净傲霜完成签到 ,获得积分10
9秒前
yuyuan发布了新的文献求助10
10秒前
pterionGao完成签到 ,获得积分10
10秒前
斯文败类应助Bonnie采纳,获得10
11秒前
蔚欢完成签到 ,获得积分10
12秒前
13秒前
今昔完成签到,获得积分10
13秒前
14秒前
AI发布了新的文献求助10
15秒前
16秒前
guojingjing发布了新的文献求助10
17秒前
今昔发布了新的文献求助10
18秒前
默默发布了新的文献求助10
18秒前
白星辰完成签到 ,获得积分10
20秒前
subat完成签到,获得积分10
20秒前
hush完成签到,获得积分10
22秒前
KY发布了新的文献求助10
23秒前
云霞完成签到 ,获得积分10
23秒前
熊猫发布了新的文献求助30
24秒前
guojingjing完成签到,获得积分10
25秒前
重要手机完成签到 ,获得积分10
26秒前
26秒前
WZH发布了新的文献求助10
31秒前
慕青应助默默采纳,获得10
32秒前
QQ糖发布了新的文献求助10
32秒前
没有昵称完成签到 ,获得积分10
33秒前
my应助pancake采纳,获得30
35秒前
文艺语蓉关注了科研通微信公众号
38秒前
39秒前
科目三应助今昔采纳,获得10
42秒前
NexusExplorer应助蓦然采纳,获得10
42秒前
殷勤的凌蝶完成签到 ,获得积分10
44秒前
轻松棉花糖完成签到 ,获得积分10
44秒前
珏珏_不是玉玉完成签到 ,获得积分10
46秒前
FX1688完成签到 ,获得积分10
47秒前
47秒前
林欢喜完成签到,获得积分10
47秒前
50秒前
WZH完成签到,获得积分10
51秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Kolmogorov, A. N. Qualitative study of mathematical models of populations. Problems of Cybernetics, 1972, 25, 100-106 800
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5301583
求助须知:如何正确求助?哪些是违规求助? 4449070
关于积分的说明 13847752
捐赠科研通 4335139
什么是DOI,文献DOI怎么找? 2380126
邀请新用户注册赠送积分活动 1375107
关于科研通互助平台的介绍 1341130