Physics-Informed Machine Learning: A Survey on Problems, Methods and Applications

人工智能 机器学习 计算机科学 领域(数学) 强化学习 推论 领域(数学分析) 物理系统 算法学习理论 主动学习(机器学习) 物理定律 代表(政治) 数据科学 数学 物理 数学分析 政治 量子力学 法学 纯数学 政治学
作者
Zhongkai Hao,Songming Liu,Yichi Zhang,Ying Cui,Yong Feng,Hang Su,Jun Zhu
出处
期刊:Cornell University - arXiv 被引量:1
标识
DOI:10.48550/arxiv.2211.08064
摘要

Recent advances of data-driven machine learning have revolutionized fields like computer vision, reinforcement learning, and many scientific and engineering domains. In many real-world and scientific problems, systems that generate data are governed by physical laws. Recent work shows that it provides potential benefits for machine learning models by incorporating the physical prior and collected data, which makes the intersection of machine learning and physics become a prevailing paradigm. By integrating the data and mathematical physics models seamlessly, it can guide the machine learning model towards solutions that are physically plausible, improving accuracy and efficiency even in uncertain and high-dimensional contexts. In this survey, we present this learning paradigm called Physics-Informed Machine Learning (PIML) which is to build a model that leverages empirical data and available physical prior knowledge to improve performance on a set of tasks that involve a physical mechanism. We systematically review the recent development of physics-informed machine learning from three perspectives of machine learning tasks, representation of physical prior, and methods for incorporating physical prior. We also propose several important open research problems based on the current trends in the field. We argue that encoding different forms of physical prior into model architectures, optimizers, inference algorithms, and significant domain-specific applications like inverse engineering design and robotic control is far from being fully explored in the field of physics-informed machine learning. We believe that the interdisciplinary research of physics-informed machine learning will significantly propel research progress, foster the creation of more effective machine learning models, and also offer invaluable assistance in addressing long-standing problems in related disciplines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
洁净白容完成签到 ,获得积分10
3秒前
Seven发布了新的文献求助10
6秒前
思源应助Karvs采纳,获得10
7秒前
tkp完成签到,获得积分10
8秒前
Jasper应助lily88采纳,获得10
9秒前
泡芙不甜完成签到 ,获得积分10
10秒前
10秒前
Jasper应助无情向梦采纳,获得10
10秒前
秀丽的皮皮虾完成签到 ,获得积分10
12秒前
Hello应助好好好采纳,获得10
14秒前
aixiaoming0503完成签到,获得积分10
14秒前
小橘发布了新的文献求助30
15秒前
任梓宁完成签到 ,获得积分10
15秒前
16秒前
Chen发布了新的文献求助10
18秒前
郭郭关注了科研通微信公众号
18秒前
Lucas应助111采纳,获得30
19秒前
传奇3应助FEOROCHA采纳,获得10
20秒前
23秒前
曾建完成签到 ,获得积分10
24秒前
逢春完成签到,获得积分10
27秒前
七十三度完成签到,获得积分10
27秒前
是猪猪呀完成签到 ,获得积分10
27秒前
Yara.H发布了新的文献求助10
28秒前
欢喜的代容完成签到,获得积分10
29秒前
清新的剑心完成签到 ,获得积分10
29秒前
orixero应助Chen采纳,获得10
31秒前
xwl9955完成签到 ,获得积分10
31秒前
爆米花应助那个笨笨采纳,获得10
32秒前
bckl888完成签到,获得积分10
34秒前
34秒前
研友_EZ1KkL完成签到,获得积分10
35秒前
豆豆完成签到,获得积分10
36秒前
852应助害怕的丹雪采纳,获得10
37秒前
37秒前
YAYA完成签到 ,获得积分10
37秒前
萝卜家大小姐完成签到,获得积分10
39秒前
Accepted应助mrcat采纳,获得10
39秒前
fionaFDU完成签到,获得积分10
39秒前
默默雨竹发布了新的文献求助20
40秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139837
求助须知:如何正确求助?哪些是违规求助? 2790697
关于积分的说明 7796331
捐赠科研通 2447121
什么是DOI,文献DOI怎么找? 1301574
科研通“疑难数据库(出版商)”最低求助积分说明 626305
版权声明 601185