Multi-agent deep reinforcement learning for online request scheduling in edge cooperation networks

计算机科学 强化学习 分布式计算 调度(生产过程) 并发 边缘计算 边缘设备 服务质量 计算机网络 云计算 移动边缘计算 GSM演进的增强数据速率 人工智能 操作系统 运营管理 经济
作者
Yaqiang Zhang,Ruyang Li,Yaqian Zhao,Rengang Li,Yanwei Wang,Zhangbing Zhou
出处
期刊:Future Generation Computer Systems [Elsevier BV]
卷期号:141: 258-268 被引量:10
标识
DOI:10.1016/j.future.2022.11.017
摘要

Edge computing as a complementary paradigm of cloud computing has gained more attention by providing mobile users with diversified services at the network edge. However, the increasingly complex mobile applications put a heavier load on edge networks. It is challenging to provide concurrency requests with high-quality service processing, especially when the edge networks are dynamically changing. To address the above issues, this paper investigates the online concurrent user requests scheduling optimization problem in edge cooperation networks. We model it as an online multi-stage decision-making problem, where requests are divided into a group of independent and logically related sub-tasks. We proposed a centralized training distributed execution based multi-agent deep reinforcement learning technique to realize the implicit cooperation scheduling decision-making policy learning among edge nodes. At the centralized training stage of the proposed mechanism, a value-decomposition-based policy learning technique is adopted to improve the long-term system performance, while at the distributed execution stage, only local environment status information is needed for each edge node to make the request scheduling decision. Extensive experiments are conducted, and simulation results demonstrate that the proposed mechanism outperforms other request scheduling mechanisms in reducing the long-term average system delay and energy consumption while improving the throughput rate of the system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
善学以致用应助666采纳,获得10
1秒前
宋博文完成签到,获得积分10
2秒前
欢喜怀绿完成签到,获得积分10
3秒前
4秒前
4秒前
共享精神应助smldx采纳,获得10
4秒前
Always完成签到,获得积分10
5秒前
5秒前
memedaaaah发布了新的文献求助10
5秒前
6秒前
6秒前
7秒前
7秒前
平常的迎夏完成签到,获得积分10
8秒前
9秒前
9秒前
9秒前
隐形曼青应助秋澄采纳,获得10
9秒前
9秒前
11秒前
xzn发布了新的文献求助10
11秒前
hahaha发布了新的文献求助10
11秒前
11秒前
青云冰城发布了新的文献求助10
12秒前
oo发布了新的文献求助10
12秒前
12秒前
不倒翁37发布了新的文献求助10
13秒前
cmdan完成签到,获得积分10
13秒前
蓝溺完成签到,获得积分10
14秒前
邵小庆发布了新的文献求助10
14秒前
15秒前
15秒前
15秒前
桐桐应助cc采纳,获得10
16秒前
等待吐司应助欢喜代萱采纳,获得10
16秒前
ss完成签到 ,获得积分10
16秒前
刘乐发布了新的文献求助10
16秒前
柳觅夏发布了新的文献求助10
16秒前
Lucas应助芜湖芜湖采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5264674
求助须知:如何正确求助?哪些是违规求助? 4424909
关于积分的说明 13774672
捐赠科研通 4300019
什么是DOI,文献DOI怎么找? 2359586
邀请新用户注册赠送积分活动 1355696
关于科研通互助平台的介绍 1316961