Multi-agent deep reinforcement learning for online request scheduling in edge cooperation networks

计算机科学 强化学习 分布式计算 调度(生产过程) 并发 边缘计算 边缘设备 服务质量 计算机网络 云计算 移动边缘计算 GSM演进的增强数据速率 人工智能 操作系统 运营管理 经济
作者
Yaqiang Zhang,Ruyang Li,Yaqian Zhao,Rengang Li,Yanwei Wang,Zhangbing Zhou
出处
期刊:Future Generation Computer Systems [Elsevier BV]
卷期号:141: 258-268 被引量:10
标识
DOI:10.1016/j.future.2022.11.017
摘要

Edge computing as a complementary paradigm of cloud computing has gained more attention by providing mobile users with diversified services at the network edge. However, the increasingly complex mobile applications put a heavier load on edge networks. It is challenging to provide concurrency requests with high-quality service processing, especially when the edge networks are dynamically changing. To address the above issues, this paper investigates the online concurrent user requests scheduling optimization problem in edge cooperation networks. We model it as an online multi-stage decision-making problem, where requests are divided into a group of independent and logically related sub-tasks. We proposed a centralized training distributed execution based multi-agent deep reinforcement learning technique to realize the implicit cooperation scheduling decision-making policy learning among edge nodes. At the centralized training stage of the proposed mechanism, a value-decomposition-based policy learning technique is adopted to improve the long-term system performance, while at the distributed execution stage, only local environment status information is needed for each edge node to make the request scheduling decision. Extensive experiments are conducted, and simulation results demonstrate that the proposed mechanism outperforms other request scheduling mechanisms in reducing the long-term average system delay and energy consumption while improving the throughput rate of the system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hui发布了新的文献求助10
1秒前
马吉克完成签到 ,获得积分10
1秒前
文森特的向日葵完成签到,获得积分10
1秒前
如初发布了新的文献求助10
1秒前
Cccrik完成签到,获得积分10
1秒前
王小雨完成签到 ,获得积分10
1秒前
猪猪hero发布了新的文献求助10
2秒前
浮若安生完成签到,获得积分10
2秒前
3秒前
邵丹完成签到 ,获得积分20
3秒前
Cccrik发布了新的文献求助30
4秒前
汉堡包应助一刀采纳,获得10
4秒前
4秒前
Dr.向发布了新的文献求助10
5秒前
5秒前
科研通AI2S应助and999采纳,获得10
6秒前
英俊的铭应助夜莺采纳,获得10
7秒前
在水一方应助夜莺采纳,获得10
7秒前
Lucas应助夜莺采纳,获得10
7秒前
Jasper应助夜莺采纳,获得10
7秒前
完美世界应助onepine采纳,获得10
7秒前
落后青筠完成签到 ,获得积分10
7秒前
9秒前
JamesPei应助jeonghan采纳,获得10
10秒前
Adler发布了新的文献求助60
10秒前
wy_wy完成签到,获得积分10
10秒前
情怀应助猪猪hero采纳,获得10
11秒前
浮华完成签到,获得积分10
11秒前
11秒前
11秒前
11秒前
丘比特应助Jeje采纳,获得10
12秒前
量子星尘发布了新的文献求助10
12秒前
超人研究生完成签到,获得积分10
13秒前
C胖胖完成签到,获得积分10
13秒前
Owen应助chromium22采纳,获得10
13秒前
颜靖仇完成签到,获得积分10
14秒前
大方若山完成签到,获得积分10
14秒前
nanami完成签到,获得积分10
15秒前
白开水完成签到,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5097403
求助须知:如何正确求助?哪些是违规求助? 4309929
关于积分的说明 13428703
捐赠科研通 4137399
什么是DOI,文献DOI怎么找? 2266602
邀请新用户注册赠送积分活动 1269747
关于科研通互助平台的介绍 1206069