Multi-agent deep reinforcement learning for online request scheduling in edge cooperation networks

计算机科学 强化学习 分布式计算 调度(生产过程) 并发 边缘计算 边缘设备 服务质量 计算机网络 云计算 移动边缘计算 GSM演进的增强数据速率 人工智能 操作系统 运营管理 经济
作者
Yaqiang Zhang,Ruyang Li,Yaqian Zhao,Rengang Li,Yanwei Wang,Zhangbing Zhou
出处
期刊:Future Generation Computer Systems [Elsevier BV]
卷期号:141: 258-268 被引量:10
标识
DOI:10.1016/j.future.2022.11.017
摘要

Edge computing as a complementary paradigm of cloud computing has gained more attention by providing mobile users with diversified services at the network edge. However, the increasingly complex mobile applications put a heavier load on edge networks. It is challenging to provide concurrency requests with high-quality service processing, especially when the edge networks are dynamically changing. To address the above issues, this paper investigates the online concurrent user requests scheduling optimization problem in edge cooperation networks. We model it as an online multi-stage decision-making problem, where requests are divided into a group of independent and logically related sub-tasks. We proposed a centralized training distributed execution based multi-agent deep reinforcement learning technique to realize the implicit cooperation scheduling decision-making policy learning among edge nodes. At the centralized training stage of the proposed mechanism, a value-decomposition-based policy learning technique is adopted to improve the long-term system performance, while at the distributed execution stage, only local environment status information is needed for each edge node to make the request scheduling decision. Extensive experiments are conducted, and simulation results demonstrate that the proposed mechanism outperforms other request scheduling mechanisms in reducing the long-term average system delay and energy consumption while improving the throughput rate of the system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
傻子完成签到,获得积分10
2秒前
3秒前
5秒前
5秒前
Rick发布了新的文献求助10
8秒前
华仔应助满眼星辰采纳,获得10
9秒前
9秒前
10秒前
香蕉觅云应助平常的凝蕊采纳,获得30
11秒前
11秒前
可靠笑翠发布了新的文献求助10
11秒前
12秒前
maox1aoxin应助zhang-leo采纳,获得30
12秒前
12秒前
fishfun发布了新的文献求助10
13秒前
ww007完成签到,获得积分10
14秒前
ding应助Rick采纳,获得10
14秒前
16秒前
量子星尘发布了新的文献求助10
16秒前
烟花应助Flynn采纳,获得10
16秒前
17秒前
花畦种豆完成签到,获得积分10
18秒前
扭一扭的奥利奥完成签到,获得积分10
19秒前
19秒前
李健应助无限妙梦采纳,获得10
20秒前
Bio应助感动背包采纳,获得30
20秒前
桐桐应助釉质牙医采纳,获得10
22秒前
22秒前
25秒前
Astrid发布了新的文献求助10
26秒前
27秒前
满眼星辰发布了新的文献求助10
27秒前
28秒前
29秒前
顾矜应助xiao xu采纳,获得10
29秒前
无限妙梦发布了新的文献求助10
33秒前
文静元霜发布了新的文献求助10
33秒前
有终完成签到 ,获得积分10
34秒前
34秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979693
求助须知:如何正确求助?哪些是违规求助? 3523666
关于积分的说明 11218291
捐赠科研通 3261174
什么是DOI,文献DOI怎么找? 1800485
邀请新用户注册赠送积分活动 879103
科研通“疑难数据库(出版商)”最低求助积分说明 807167