Multi-agent deep reinforcement learning for online request scheduling in edge cooperation networks

计算机科学 强化学习 分布式计算 调度(生产过程) 并发 边缘计算 边缘设备 服务质量 计算机网络 云计算 移动边缘计算 GSM演进的增强数据速率 人工智能 操作系统 运营管理 经济
作者
Yaqiang Zhang,Ruyang Li,Yaqian Zhao,Rengang Li,Yanwei Wang,Zhangbing Zhou
出处
期刊:Future Generation Computer Systems [Elsevier]
卷期号:141: 258-268 被引量:10
标识
DOI:10.1016/j.future.2022.11.017
摘要

Edge computing as a complementary paradigm of cloud computing has gained more attention by providing mobile users with diversified services at the network edge. However, the increasingly complex mobile applications put a heavier load on edge networks. It is challenging to provide concurrency requests with high-quality service processing, especially when the edge networks are dynamically changing. To address the above issues, this paper investigates the online concurrent user requests scheduling optimization problem in edge cooperation networks. We model it as an online multi-stage decision-making problem, where requests are divided into a group of independent and logically related sub-tasks. We proposed a centralized training distributed execution based multi-agent deep reinforcement learning technique to realize the implicit cooperation scheduling decision-making policy learning among edge nodes. At the centralized training stage of the proposed mechanism, a value-decomposition-based policy learning technique is adopted to improve the long-term system performance, while at the distributed execution stage, only local environment status information is needed for each edge node to make the request scheduling decision. Extensive experiments are conducted, and simulation results demonstrate that the proposed mechanism outperforms other request scheduling mechanisms in reducing the long-term average system delay and energy consumption while improving the throughput rate of the system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
锋feng完成签到 ,获得积分10
刚刚
cheng完成签到,获得积分10
1秒前
gwx发布了新的文献求助10
3秒前
3秒前
科研通AI2S应助lvsehx采纳,获得10
4秒前
火星上的含羞草完成签到,获得积分10
5秒前
6秒前
互助遵法尚德应助包容豪采纳,获得10
6秒前
酷波er应助包容的人生采纳,获得10
6秒前
耍酷的飞烟完成签到,获得积分10
7秒前
7秒前
8秒前
年三月完成签到 ,获得积分10
8秒前
无奈的映阳完成签到,获得积分10
8秒前
Duha发布了新的文献求助10
9秒前
11秒前
踏实过客发布了新的文献求助10
11秒前
12秒前
蓝鲸完成签到 ,获得积分10
13秒前
15秒前
15秒前
云海发布了新的文献求助10
15秒前
zwhy579完成签到 ,获得积分10
16秒前
Waqas完成签到,获得积分10
16秒前
16秒前
17秒前
17秒前
徐创发布了新的文献求助10
17秒前
17秒前
Murray发布了新的文献求助100
18秒前
18秒前
阳光怀亦发布了新的文献求助10
19秒前
20秒前
21秒前
晨寒Astra发布了新的文献求助30
22秒前
Duha完成签到,获得积分10
22秒前
Accepted应助yfw采纳,获得10
23秒前
稳重的幻灵完成签到,获得积分10
25秒前
在水一方应助万幸鹿采纳,获得10
25秒前
善学以致用应助981678采纳,获得10
27秒前
高分求助中
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 450
Die Gottesanbeterin: Mantis religiosa: 656 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3166424
求助须知:如何正确求助?哪些是违规求助? 2817875
关于积分的说明 7918097
捐赠科研通 2477432
什么是DOI,文献DOI怎么找? 1319613
科研通“疑难数据库(出版商)”最低求助积分说明 632536
版权声明 602415