亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Residential greenness and air pollution concerning excessive gestational weight gain during pregnancy: A cross-sectional study in Wuhan, China

环境卫生 空气污染 环境科学 人口 污染物 医学 化学 有机化学
作者
Miyuan Wang,Wen Chen,Haiqin Qi,Ke Xu,Mengna Wei,Wenqi Xia,Lan Lv,Zhengrong Duan,Jianduan Zhang
出处
期刊:Environmental Research [Elsevier]
卷期号:217: 114866-114866 被引量:3
标识
DOI:10.1016/j.envres.2022.114866
摘要

Previous studies have indicated that exposure to residential greenness may benefit the health status of pregnant women, and air pollution may exert a mediating effect. Gestational weight gain (GWG) is an important indicator of pregnant women and fetuses' health and nutrition status. However, evidence concerning the impact of residential greenness on excessive gestational weight gain (EGWG) is scarce, and to what extent air pollution in urban settings mediates this relationship remains unclear.This study aims to explore the association of residential greenness with EGWG, consider the mediating effect of air pollution, and estimate the combined impact of residential greenness and air pollution exposures on EGWG.This population-based cross-sectional study involved 51,507 pregnant women with individual-level data on residential addresses in the Wuhan Maternal and Child Health Management Information System. Two spectral indexes, the normalized difference vegetation index (NDVI) and soil-adjusted vegetation index (SAVI), were used to proxy residential greenness. The air pollution data included six indicators (PM2.5, PM10, SO2, CO, NO2, O3) and used the Ordinary Kriging interpolation method to estimate overall pregnancy exposure to air pollutants. Generalized linear mixed regression models were utilized to explore the relationship between residential greenness and EGWG. Restricted cubic spline (RCS) models were developed to examine the dose-response relationships. Mediation analyses explored the potential mediating role of air pollution in the residential greenness-EGWG associations. Finally, the weighted-quantile-sum (WQS) regression model was used to investigate the association between residential greenness-air pollutants co-exposure and EGWG.Among all participants, 26,442 had EGWG. In the adjusted model, the negative association was found significant for NDVI100-m, NDVI200-m, and NDVI500-m with EGWG. For example, each IQR increase in NDVI100-m was associated with 2.8% (95% CI: 0.6-5.0) lower odds for EGWG. The result of WQS regression showed that, when considering the six air pollutants and NDVI-100m together, both positive and negative WQS indices were significantly associated with EGWG, PM10, PM2.5, with SO2 having significant weights in the positive effect direction and CO, O3, NO2, and NDVI100-m having a negative effect. Our results also suggested that SO2, NO2, PM10, PM2.5, and CO significantly mediated the association between NDVI-100m and EGWG, and our estimates were generally robust in the sensitivity analysis.Exposure to a higher level of residential greenness is associated with a reduced risk of EGWG, in which air pollution may exert a mediating effect. Pregnant women might benefit more in gaining healthy gestational weight when greenness levels increase from low to medium than from medium to high. Given the current cross-sectional study design, large-sale prospective cohort studies are needed to confirm our findings further.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
Aurora发布了新的文献求助10
5秒前
江氏巨颏虎完成签到,获得积分10
7秒前
彭于晏应助ohhhhhoho采纳,获得10
7秒前
8秒前
Aurora完成签到,获得积分10
10秒前
LONG发布了新的文献求助10
14秒前
挺帅一男的完成签到,获得积分10
15秒前
17秒前
biophilia发布了新的文献求助10
21秒前
谨慎的曼安完成签到 ,获得积分10
23秒前
草莓发布了新的文献求助10
28秒前
俊逸沛菡完成签到 ,获得积分10
29秒前
咸鱼完成签到 ,获得积分10
31秒前
Lucas应助白易采纳,获得10
32秒前
36秒前
36秒前
黎语堂完成签到,获得积分20
38秒前
40秒前
冷酷汉堡完成签到,获得积分10
40秒前
白易完成签到,获得积分10
42秒前
Rottyyii发布了新的文献求助10
42秒前
南风发布了新的文献求助10
43秒前
白易发布了新的文献求助10
45秒前
LONG发布了新的文献求助10
45秒前
66完成签到 ,获得积分10
48秒前
48秒前
49秒前
leoMessi完成签到 ,获得积分10
51秒前
51秒前
51秒前
黄熠尘发布了新的文献求助10
54秒前
LONG完成签到,获得积分10
54秒前
澄如发布了新的文献求助10
55秒前
56秒前
Skymi发布了新的文献求助10
56秒前
阿甘你好应助冷静新烟采纳,获得10
59秒前
万能图书馆应助澄如采纳,获得10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5714199
求助须知:如何正确求助?哪些是违规求助? 5221497
关于积分的说明 15272903
捐赠科研通 4865707
什么是DOI,文献DOI怎么找? 2612304
邀请新用户注册赠送积分活动 1562442
关于科研通互助平台的介绍 1519639