亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Residential greenness and air pollution concerning excessive gestational weight gain during pregnancy: A cross-sectional study in Wuhan, China

环境卫生 空气污染 环境科学 人口 污染物 医学 化学 有机化学
作者
Miyuan Wang,Wen Chen,Haiqin Qi,Ke Xu,Mengna Wei,Wenqi Xia,Lan Lv,Zhengrong Duan,Jianduan Zhang
出处
期刊:Environmental Research [Elsevier]
卷期号:217: 114866-114866 被引量:3
标识
DOI:10.1016/j.envres.2022.114866
摘要

Previous studies have indicated that exposure to residential greenness may benefit the health status of pregnant women, and air pollution may exert a mediating effect. Gestational weight gain (GWG) is an important indicator of pregnant women and fetuses' health and nutrition status. However, evidence concerning the impact of residential greenness on excessive gestational weight gain (EGWG) is scarce, and to what extent air pollution in urban settings mediates this relationship remains unclear.This study aims to explore the association of residential greenness with EGWG, consider the mediating effect of air pollution, and estimate the combined impact of residential greenness and air pollution exposures on EGWG.This population-based cross-sectional study involved 51,507 pregnant women with individual-level data on residential addresses in the Wuhan Maternal and Child Health Management Information System. Two spectral indexes, the normalized difference vegetation index (NDVI) and soil-adjusted vegetation index (SAVI), were used to proxy residential greenness. The air pollution data included six indicators (PM2.5, PM10, SO2, CO, NO2, O3) and used the Ordinary Kriging interpolation method to estimate overall pregnancy exposure to air pollutants. Generalized linear mixed regression models were utilized to explore the relationship between residential greenness and EGWG. Restricted cubic spline (RCS) models were developed to examine the dose-response relationships. Mediation analyses explored the potential mediating role of air pollution in the residential greenness-EGWG associations. Finally, the weighted-quantile-sum (WQS) regression model was used to investigate the association between residential greenness-air pollutants co-exposure and EGWG.Among all participants, 26,442 had EGWG. In the adjusted model, the negative association was found significant for NDVI100-m, NDVI200-m, and NDVI500-m with EGWG. For example, each IQR increase in NDVI100-m was associated with 2.8% (95% CI: 0.6-5.0) lower odds for EGWG. The result of WQS regression showed that, when considering the six air pollutants and NDVI-100m together, both positive and negative WQS indices were significantly associated with EGWG, PM10, PM2.5, with SO2 having significant weights in the positive effect direction and CO, O3, NO2, and NDVI100-m having a negative effect. Our results also suggested that SO2, NO2, PM10, PM2.5, and CO significantly mediated the association between NDVI-100m and EGWG, and our estimates were generally robust in the sensitivity analysis.Exposure to a higher level of residential greenness is associated with a reduced risk of EGWG, in which air pollution may exert a mediating effect. Pregnant women might benefit more in gaining healthy gestational weight when greenness levels increase from low to medium than from medium to high. Given the current cross-sectional study design, large-sale prospective cohort studies are needed to confirm our findings further.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
爱吃大米饭完成签到 ,获得积分10
2秒前
7秒前
赘婿应助保持科研热情采纳,获得10
19秒前
舒服的觅夏完成签到,获得积分10
20秒前
23秒前
29秒前
量子星尘发布了新的文献求助10
30秒前
35秒前
36秒前
彭于晏应助罗大壮采纳,获得10
45秒前
直率的笑翠完成签到 ,获得积分10
48秒前
bfs完成签到 ,获得积分10
54秒前
54秒前
罗大壮发布了新的文献求助10
57秒前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
mark163完成签到,获得积分10
1分钟前
斯文败类应助科研通管家采纳,获得10
1分钟前
1分钟前
HANZHANG应助科研通管家采纳,获得10
1分钟前
21完成签到 ,获得积分10
1分钟前
Jasper应助找不完采纳,获得10
1分钟前
1分钟前
1分钟前
Criminology34应助ling30采纳,获得10
1分钟前
1分钟前
Freeasy完成签到 ,获得积分10
2分钟前
SciGPT应助krajicek采纳,获得10
2分钟前
x夏天完成签到 ,获得积分10
2分钟前
zoey完成签到,获得积分10
2分钟前
2分钟前
sofardli完成签到,获得积分10
2分钟前
sofardli发布了新的文献求助20
2分钟前
2分钟前
2分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
NattyPoe应助科研通管家采纳,获得10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5755340
求助须知:如何正确求助?哪些是违规求助? 5493931
关于积分的说明 15381135
捐赠科研通 4893488
什么是DOI,文献DOI怎么找? 2632142
邀请新用户注册赠送积分活动 1579983
关于科研通互助平台的介绍 1535786