Selection of characteristic wavelengths using SMA for laser induced fluorescence spectroscopy of power transformer oil

变压器油 变压器 波长 材料科学 荧光光谱法 光谱学 荧光 电子工程 光电子学 工程类 电气工程 光学 物理 量子力学 电压
作者
Feng Hu,Jian Hu,Rongying Dai,Yafeng Guan,Xianfeng Sheng,Bo Gao,Kun Wang,Yu Liu,Xiaokang Yao
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier]
卷期号:288: 122140-122140
标识
DOI:10.1016/j.saa.2022.122140
摘要

As the core component of the power system, the accurate analysis of its state and fault type is very important for the maintenance and repair of the transformer. The detection method represented by the transformer oil dissolved gas has the disadvantages of complicated processing steps and high operation requirements. Here, laser induced fluorescence (LIF) spectroscopy was applied for the analysis of transformer oil. Specifically, the slime mould algorithm (SMA) was used to select the characteristic wavelengths of the transformer oil fluorescence spectrum, and on this basis, a transformer fault diagnosis model was constructed. First, samples of transformer oil in different states were collected, and the fluorescence spectrum of the transformer oil was obtained with the help of the LIF acquisition system. Then, different spectral pretreatments were performed on the original fluorescence spectra, and it was found that the pretreatment effect of Savitzky-Golay smoothing (SG) was the best. Then, SMA was used to screen the characteristic wavelengths of the fluorescence spectrum, and 137 characteristic wavelengths were screened out to realize the accurate identification of the fluorescence spectrum of the transformer oil. In addition, the advantages of SMA for feature wavelength screening of transformer oil fluorescence spectra were demonstrated by comparing with traditional feature extraction strategies using principal components analysis (PCA). The research results show that it is effective to use SMA to screen the characteristic wavelengths of the LIF spectroscopy of transformer oil and use it for transformer fault diagnosis, which is of great significance for promoting the development of transformer fault diagnosis technology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
永远少年发布了新的文献求助10
1秒前
跳跃完成签到,获得积分20
1秒前
1秒前
2秒前
2秒前
2秒前
sansan发布了新的文献求助10
2秒前
tassssadar完成签到,获得积分10
3秒前
3秒前
通辽小判官完成签到,获得积分10
4秒前
曲蔚然发布了新的文献求助30
5秒前
liuxl完成签到,获得积分10
5秒前
长隆完成签到 ,获得积分10
7秒前
7秒前
852应助YukiXu采纳,获得10
8秒前
8秒前
jijizz发布了新的文献求助10
8秒前
yyyyy发布了新的文献求助10
8秒前
zhappy发布了新的文献求助20
8秒前
9秒前
稳重的八宝粥完成签到 ,获得积分10
10秒前
10秒前
xx关闭了xx文献求助
10秒前
11秒前
13秒前
14秒前
su发布了新的文献求助10
14秒前
小马甲应助鳗鱼灵寒采纳,获得10
14秒前
calbee发布了新的文献求助10
15秒前
lalala发布了新的文献求助10
16秒前
16秒前
张辰12536完成签到,获得积分10
17秒前
18秒前
程琳发布了新的文献求助10
18秒前
18秒前
19秒前
19秒前
88完成签到,获得积分10
19秒前
我是站长才怪应助谭谨川采纳,获得10
19秒前
1233发布了新的文献求助10
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808