Selection of characteristic wavelengths using SMA for laser induced fluorescence spectroscopy of power transformer oil

变压器油 变压器 波长 材料科学 荧光光谱法 光谱学 荧光 电子工程 光电子学 工程类 电气工程 光学 物理 量子力学 电压
作者
Feng Hu,Jian Hu,Rongying Dai,Yafeng Guan,Xianfeng Sheng,Bo Gao,Kun Wang,Yu Liu,Xiaokang Yao
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier BV]
卷期号:288: 122140-122140
标识
DOI:10.1016/j.saa.2022.122140
摘要

As the core component of the power system, the accurate analysis of its state and fault type is very important for the maintenance and repair of the transformer. The detection method represented by the transformer oil dissolved gas has the disadvantages of complicated processing steps and high operation requirements. Here, laser induced fluorescence (LIF) spectroscopy was applied for the analysis of transformer oil. Specifically, the slime mould algorithm (SMA) was used to select the characteristic wavelengths of the transformer oil fluorescence spectrum, and on this basis, a transformer fault diagnosis model was constructed. First, samples of transformer oil in different states were collected, and the fluorescence spectrum of the transformer oil was obtained with the help of the LIF acquisition system. Then, different spectral pretreatments were performed on the original fluorescence spectra, and it was found that the pretreatment effect of Savitzky-Golay smoothing (SG) was the best. Then, SMA was used to screen the characteristic wavelengths of the fluorescence spectrum, and 137 characteristic wavelengths were screened out to realize the accurate identification of the fluorescence spectrum of the transformer oil. In addition, the advantages of SMA for feature wavelength screening of transformer oil fluorescence spectra were demonstrated by comparing with traditional feature extraction strategies using principal components analysis (PCA). The research results show that it is effective to use SMA to screen the characteristic wavelengths of the LIF spectroscopy of transformer oil and use it for transformer fault diagnosis, which is of great significance for promoting the development of transformer fault diagnosis technology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123发布了新的文献求助10
刚刚
冬梅发布了新的文献求助10
刚刚
1秒前
dummy完成签到,获得积分10
1秒前
1秒前
郭希茜完成签到,获得积分10
2秒前
2秒前
2秒前
待风归发布了新的文献求助10
2秒前
2秒前
xiaolei001应助科研通管家采纳,获得10
2秒前
充电宝应助科研通管家采纳,获得10
3秒前
3秒前
没有皮卡丘的小智¹⁸⁹⁵完成签到,获得积分10
3秒前
SciGPT应助科研通管家采纳,获得10
3秒前
3秒前
NexusExplorer应助科研通管家采纳,获得10
3秒前
4秒前
动听的乐安完成签到,获得积分20
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
lanxinyue完成签到,获得积分0
4秒前
lhr完成签到,获得积分10
4秒前
星辰大海应助科研通管家采纳,获得10
4秒前
star应助科研通管家采纳,获得150
4秒前
小星发布了新的文献求助10
5秒前
我是老大应助科研通管家采纳,获得10
5秒前
5秒前
无花果应助12采纳,获得10
5秒前
在水一方应助科研通管家采纳,获得10
5秒前
小马甲应助科研通管家采纳,获得10
5秒前
赘婿应助科研通管家采纳,获得10
6秒前
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
桐桐应助科研通管家采纳,获得10
6秒前
健壮雨发布了新的文献求助10
7秒前
wanci应助科研通管家采纳,获得60
7秒前
7秒前
7秒前
7秒前
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5072388
求助须知:如何正确求助?哪些是违规求助? 4292768
关于积分的说明 13375916
捐赠科研通 4113855
什么是DOI,文献DOI怎么找? 2252710
邀请新用户注册赠送积分活动 1257518
关于科研通互助平台的介绍 1190266