Selection of characteristic wavelengths using SMA for laser induced fluorescence spectroscopy of power transformer oil

变压器油 变压器 波长 材料科学 荧光光谱法 光谱学 荧光 电子工程 光电子学 工程类 电气工程 光学 物理 量子力学 电压
作者
Feng Hu,Jian Hu,Rongying Dai,Yafeng Guan,Xianfeng Sheng,Bo Gao,Kun Wang,Yu Liu,Xiaokang Yao
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier]
卷期号:288: 122140-122140
标识
DOI:10.1016/j.saa.2022.122140
摘要

As the core component of the power system, the accurate analysis of its state and fault type is very important for the maintenance and repair of the transformer. The detection method represented by the transformer oil dissolved gas has the disadvantages of complicated processing steps and high operation requirements. Here, laser induced fluorescence (LIF) spectroscopy was applied for the analysis of transformer oil. Specifically, the slime mould algorithm (SMA) was used to select the characteristic wavelengths of the transformer oil fluorescence spectrum, and on this basis, a transformer fault diagnosis model was constructed. First, samples of transformer oil in different states were collected, and the fluorescence spectrum of the transformer oil was obtained with the help of the LIF acquisition system. Then, different spectral pretreatments were performed on the original fluorescence spectra, and it was found that the pretreatment effect of Savitzky-Golay smoothing (SG) was the best. Then, SMA was used to screen the characteristic wavelengths of the fluorescence spectrum, and 137 characteristic wavelengths were screened out to realize the accurate identification of the fluorescence spectrum of the transformer oil. In addition, the advantages of SMA for feature wavelength screening of transformer oil fluorescence spectra were demonstrated by comparing with traditional feature extraction strategies using principal components analysis (PCA). The research results show that it is effective to use SMA to screen the characteristic wavelengths of the LIF spectroscopy of transformer oil and use it for transformer fault diagnosis, which is of great significance for promoting the development of transformer fault diagnosis technology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
Mannone完成签到,获得积分10
4秒前
JamesPei应助一北采纳,获得10
5秒前
sch发布了新的文献求助10
7秒前
Mannone发布了新的文献求助10
8秒前
8秒前
深情安青应助PANYIAO采纳,获得10
8秒前
Cica完成签到 ,获得积分10
8秒前
10秒前
小马甲应助优美飞薇采纳,获得10
12秒前
少年完成签到,获得积分10
13秒前
14秒前
15秒前
隐形曼青应助龚俊采纳,获得10
16秒前
++发布了新的文献求助10
16秒前
17秒前
完美世界应助Mannone采纳,获得10
17秒前
neil_match完成签到,获得积分10
18秒前
张艺完成签到,获得积分10
18秒前
18秒前
可爱的函函应助生生采纳,获得10
20秒前
21秒前
22秒前
PANYIAO发布了新的文献求助10
23秒前
24秒前
暗冰不冻应助蒋谷兰采纳,获得10
24秒前
洒脱完成签到,获得积分10
26秒前
小王同志发布了新的文献求助10
27秒前
龚俊发布了新的文献求助10
27秒前
FashionBoy应助PANYIAO采纳,获得10
29秒前
31秒前
mtdxby完成签到,获得积分10
32秒前
kiminonawa应助跳跃尔琴采纳,获得10
33秒前
恐龙扛狼完成签到,获得积分10
33秒前
打打应助小王同志采纳,获得10
34秒前
科研通AI2S应助Joanna采纳,获得10
35秒前
QL发布了新的文献求助10
35秒前
LC完成签到,获得积分10
35秒前
七子完成签到 ,获得积分10
36秒前
Lucas应助Smry采纳,获得10
36秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
中国氢能技术发展路线图研究 500
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3168424
求助须知:如何正确求助?哪些是违规求助? 2819735
关于积分的说明 7927737
捐赠科研通 2479653
什么是DOI,文献DOI怎么找? 1321059
科研通“疑难数据库(出版商)”最低求助积分说明 632946
版权声明 602463