摘要
Chapter 14 Fiber in Swine Nutrition J. Paola Lancheros, J. Paola LancherosSearch for more papers by this authorCharmaine D. Espinosa, Charmaine D. EspinosaSearch for more papers by this authorSu A. Lee, Su A. LeeSearch for more papers by this authorMaryane S. Oliveira, Maryane S. OliveiraSearch for more papers by this authorHans H. Stein, Hans H. SteinSearch for more papers by this author J. Paola Lancheros, J. Paola LancherosSearch for more papers by this authorCharmaine D. Espinosa, Charmaine D. EspinosaSearch for more papers by this authorSu A. Lee, Su A. LeeSearch for more papers by this authorMaryane S. Oliveira, Maryane S. OliveiraSearch for more papers by this authorHans H. Stein, Hans H. SteinSearch for more papers by this author Book Editor(s):Lee I. Chiba, Lee I. Chiba Department of Animal Sciences, Auburn University, Auburn, Alabama, USASearch for more papers by this author First published: 16 November 2022 https://doi.org/10.1002/9781119583998.ch14 AboutPDFPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Summary This chapter summarizes current knowledge about dietary fiber in terms of characterization, analysis, and fermentation of fiber. It discusses postabsorptive metabolism of absorbed end products resulting from fiber fermentation in pigs and the impact of dietary fiber on digestibility and absorption of other nutrients. Based on functional, chemical, and physical properties, total dietary fiber may be divided into soluble dietary fiber and insoluble dietary fibers. Nonstarch polysaccharides are composed of up to several hundred thousand monosaccharide units. The use of high fiber ingredients in pig diets has increased to reduce feed cost in diet formulation, but increased concentration of fiber in the diet may reduce digestibility of other nutrients. A major impact of dietary fiber on nitrogen excretion in pigs is the shift of nitrogen excretion from the urine to the feces, which results in a reduction of the ratio between urine nitrogen excretion and fecal nitrogen excretion. References Aarnink , A. J. A. , and M. W. A. Verstegen . 2007 . Nutrition, key factor to reduce environmental load from pig production . Livest. Sci. 109 : 194 – 203 . doi: https://doi.org/10.1016/j.livsci.2007.01.112 . Abdel-Rahman , M. A. , Y. Tashiro , and K. Sonomoto . 2013 . Recent advances in lactic acid production by microbial fermentation processes . Biotechnol. Adv. 31 : 877 – 902 . doi: https://doi.org/10.1016/j.biotechadv.2013.04.002 . Abelilla , J. J. 2018 . Fermentation and energetic value of fiber in feed ingredients and diets fed to pigs . PhD. Diss. Univ. Illinois , Urbana-Champaign, IL, US . https://nutrition.ansci.illinois.edu/sites/default/files/DissertationAbelilla.pdf . Abelilla , J. J. , and H. H. Stein . 2019 . Degradation of dietary fiber in the stomach, small intestine, and large intestine of growing pigs fed corn- or wheat-based diets without or with microbial xylanase . J. Anim. Sci. 97 : 338 – 352 . doi: https://doi.org/10.1093/jas/sky403 . Acosta , J. A. , H. H. Stein , and J. F. Patience . 2020 . Impact of increasing the levels of insoluble fiber and on the method of diet formulation measures of energy and nutrient digestibility in growing pigs . J. Anim. Sci. 98 . doi: https://doi.org/10.1093/jas/skaa130 . Albersheim , P. , A. Darvill , K. Roberts , R. Sederoff , and A. Staehelin . 2011 . Plant cell walls . Garland Science, Taylor & Francis Group , New York, NY . Alyassin , M. , and G. M. Campbell . 2019 . Challenges and constraints in analysis of oligosaccharides and other fibre components . In: M. Alyassin , and G. M. Campbell , editors, The value of fibre engaging the second brain for animal nutrition . Wageningen Academic Publishers , Wageningen, The Netherlands . p. 257 – 272 . Anguita , M. , N. Canibe , J. F. Pérez , and B. B. Jensen . 2006 . Influence of the amount of dietary fiber on the available energy from hindgut fermentation in growing pigs: Use of cannulated pigs and in vitro fermentation . J. Anim. Sci. 84 : 2766 – 2778 . doi: https://doi.org/10.2527/jas.2005-212 . AOAC Int. 2007 . Official methods of analysis of AOAC Int . 18th ed. Rev. 2nd. Natl. Acad. Press , Gaithersburg, MD . AOCS . 2006 . Official methods and recommended practices of the AOCS . 5th. Am. Oil Chem. Soc. , Champaign, IL . Appeldoorn , M. M. , M. A. Kabel , D. Van Eylen , H. Gruppen , and H. A. Schols . 2010 . Characterization of oligomeric xylan structures from corn fiber resistant to pretreatment and simultaneous saccharification and fermentation . J. Agric. Food. Chem. 58 : 11294 – 11301 . doi: https://doi.org/10.1021/jf102849x . Arvill , A. , and L. Bodin . 1995 . Effect of short-term ingestion of konjac glucomannan on serum cholesterol in healthy men . Am. J. Clin. Nutr. 61 : 585 – 589 . doi: https://doi.org/10.1093/ajcn/61.3.585 . Ash , R. , and G. D. Baird . 1973 . Activation of volatile fatty acids in bovine liver and rumen epithelium. Evidence for control by autoregulation . Biochem. J. 136 : 311 – 319 . doi: https://doi.org/10.1042/bj1360311 . Bach Knudsen , K. E. 1997 . Carbohydrate and lignin. contents of plant materials used in animal feeding . Anim. Feed Sci. Technol. 67 : 319 – 338 . doi: https://doi.org/10.1016/S0377-8401(97)00009-6 . Bach Knudsen , K. E. 2001 . The nutritional significance of "dietary fiber" analysis . Anim. Feed Sci. Technol. 90 : 3 – 20 . doi: https://doi.org/10.1016/S0377-8401(01)00193-6 . Bach Knudsen , K. E. 2011 . Triennial growth symposium: Effects of polymeric carbohydrates on growth and development in pigs . J. Anim. Sci. 89 : 1965 – 1980 . doi: https://doi.org/10.2527/jas.2010-3602 . Bach Knudsen , K. E. , and H. Jørgensen . 2001 . Intestinal degradation of dietary carbohydrates – from birth to maturity . In: J. E. Lindberg , and B. Ogle , editors, Digestive physiology of pigs . Cabi Publishing , New York, NY . p. 109 – 120 . Bach Knudsen , K. E. , H. N. Lærke , and H. Jørgensen . 2013 . Carbohydrates and carbohydrate utilization in swine . In: L. I. Chiba , editor, Sustainable swine nutrition . John Wiley & Sons, Inc. , Ames, IA . p. 109 – 135 . Barcroft , J. , R. A. McAnally , and A. T. Phillipson . 1944 . Absorption of volatile acids from the alimentary tract of the sheep and other animals . J. Exp. Biol. 20 : 120 – 129 . Barszcz , M. , M. Taciak , A. Tuśnio , K. Čobanová , and L. U. Grešáková . 2019 . The effect of organic and inorganic zinc source, used in combination with potato fiber, on growth, nutrient digestibility and biochemical blood profile in growing pigs . Livest. Sci. 227 : 37 – 43 . doi: https://doi.org/10.1016/j.livsci.2019.06.017 . Bartelt , J. , A. Jadamus , F. Wiese , E. Swiech , L. Buraczewska , and O. Simon . 2002 . Apparent precaecal digestibility of nutrients and level of endogenous nitrogen in digesta of the small intestine of growing pigs as affected by various digesta viscosities . Arch. Tierernahr. 56 : 93 – 107 . doi: https://doi.org/10.1080/00039420214182 . Bergman , E. N. 1990 . Energy contributions of volatile fatty acids from the gastrointestinal tract in various species . Physiol. Rev. 70 : 567 – 590 . doi: https://doi.org/10.1152/physrev.1990.70.2.567 . Berrocoso , J. D. , D. Menoyo , P. Guzmán , B. Saldaña , L. Cámara , and G. G. Mateos . 2015 . Effects of fiber inclusion on growth performance and nutrient digestibility of piglets reared under optimal or poor hygienic conditions . J. Anim. Sci. 93 : 3919 – 3931 . doi: https://doi.org/10.2527/jas.2015-9137 . Bhatia , S. K. , and Y. H. Yang . 2017 . Microbial production of volatile fatty acids: Current status and future perspectives . Rev. Environ. Sci. Biotechnol. 16 : 327 – 345 . doi: https://doi.org/10.1007/s11157-017-9431-4 . Bindelle , J. , A. Buldgen , M. Delacollette , J. Wavreille , R. Agneessens , J. P. Destain , and P. Leterme . 2009 . Influence of source and concentrations of dietary fiber on in vivo nitrogen excretion pathways in pigs as reflected by in vitro fermentation and nitrogen incorporation by fecal bacteria . J. Anim. Sci. 87 : 583 – 593 . doi: https://doi.org/10.2527/jas.2007-0717 . Bournazel , M. , M. Lessire , M. J. Duclos , M. Magnin , N. Même , C. Peyronnet , E. Recoules , A. Quinsac , E. Labussière , and A. Narcy . 2018 . Effects of rapeseed meal fiber content on phosphorus and calcium digestibility in growing pigs fed diets without or with microbial phytase . Animal 12 : 34 – 42 . doi: https://doi.org/10.1017/S1751731117001343 . Buraczewska , L. , E. Święch , A. Tuśnio , M. Taciak , M. Ceregrzyn , and W. Korczyński . 2007 . The effect of pectin on amino acid digestibility and digesta viscosity, motility and morphology of the small intestine, and on N-balance and performance of young pigs . Livest. Sci. 109 : 53 – 56 . doi: https://doi.org/10.1016/j.livsci.2007.01.058 . Burton , R. A. , and G. B. Fincher . 2009 . (1,3;1,4)-β-D-Glucans in cell walls of the poaceae, lower plants, and fungi: a tale of two linkages . Mol. Plant. 2 : 873 – 882 . doi: https://doi.org/10.1093/mp/ssp063 . Caffall , K. H. , and D. Mohnen . 2009 . The structure, function, and biosynthesis of plant cell wall pectic polysaccharides . Carbohydr. Res. 344 : 1879 – 1900 . doi: https://doi.org/10.1016/j.carres.2009.05.021 . Canh , T. T. , A. L. Sutton , A. J. A. Aarnink , M. W. A. Verstegen , J. W. Schrama , and G. C. M. Bakker . 1998 . Dietary carbohydrates alter the fecal composition and pH and the ammonia emission from slurry of growing pigs . J. Anim. Sci. 76 : 1887 – 1895 . doi: https://doi.org/10.2527/1998.7671887x . Canh , T. T. , M. W. A. Verstegen , A. J. A. Aarnink , and J. W. Schrama . 1997 . Influence of dietary factors on nitrogen partitioning and composition of urine and feces of fattening pigs . J. Anim. Sci. 75 : 700 – 706 . doi: https://doi.org/10.2527/1997.753700x . Cervantes-Pahm , S. K. , Y. Liu , A. Evans , and H. H. Stein . 2014a . Effect of novel fiber ingredients on ileal and total tract digestibility of energy and nutrients in semi-purified diets fed to growing pigs . J. Sci. Food Agric. 94 : 1284 – 1290 . doi: https://doi.org/10.1002/jsfa.6405 . Cervantes-Pahm , S. K. , Y. Liu , and H. H. Stein . 2014b . Comparative digestibility of energy and nutrients and fermentability of dietary fiber in eight cereal grains fed to pigs . J. Sci. Food Agric. 94 : 841 – 849 . doi: https://doi.org/10.1002/jsfa.6316 . Cervantes-Pahm , S. K. , and H. H. Stein . 2010 . Ileal digestibility of amino acids in conventional, fermented, and enzyme-treated soybean meal and in soy protein isolate, fish meal, and casein fed to weanling pigs . J. Anim. Sci. 88 : 2674 – 2683 . Champ , M. , A. M. Langkilde , F. Brouns , B. Kettlitz , and Y. L. B. Collet . 2003 . Advances in dietary fibre characterisation. 1. Definition of dietary fibre, physiological relevance, health benefits and analytical aspects . Nutr. Res. Rev. 16 : 71 – 82 . doi: https://doi.org/10.1079/NRR200254 . Chen , L. , L. Gao , L. Liu , Z. Ding , and H. Zhang . 2015 . Effect of graded levels of fiber from alfalfa meal on apparent and standardized ileal digestibility of amino acids of growing pigs . J. Integr. Agric. 14 : 2598 – 2604 . doi: https://doi.org/10.1016/S2095-3119(14)60924-2 . Chen , Y. , M. Y. Xie , Y. X. Wang , S. P. Nie , and C. Li . 2009 . Analysis of the monosaccharide composition of purified polysaccharides in Ganoderma atrum by capillary gas chromatography . Phytochem. Anal. 20 : 503 – 510 . doi: https://doi.org/10.1002/pca.1153 . Choct , M. , Y. Dersjant-Li , J. McLeish , and M. Peisker . 2010 . Soy oligosaccharides and soluble non-starch polysaccharides: A review of digestion, nutritive and anti-nutritive effects in pigs and poultry . Asian-Australas. J. Anim. Sci. 23 : 1386 – 1398 . doi: https://doi.org/10.5713/ajas.2010.90222 . Choi , H. , J. Y. Sung , and B. G. Kim . 2020 . Neutral detergent fiber rather than other dietary fiber types as an independent variable increases the accuracy of prediction equation for digestible energy in feeds for growing pigs . Asian-Australas. J. Anim. Sci. 33 : 615 – 622 . doi: https://doi.org/10.5713/ajas.19.0103 . Chorvatovičová , D. , E. Machová , J. Šandula , and G. Kogan . 1999 . Protective effect of the yeast glucomannan against cyclophosphamide-induced mutagenicity . Mutat. Res. Genet. Toxicol. Environ. Mutagen. 444 : 117 – 122 . doi: https://doi.org/10.1016/S1383-5718(99)00102-3 . Ciolacu , D. , F. Ciolacu , and V. I. Popa . 2011 . Amorphous cellulose - structure and characterization . Cell. Chem. Tech. 45 : 13 – 21 . Clausen , M. R. , and P. B. Mortensen . 1995 . Kinetic studies on colonocyte metabolism of short chain fatty acids and glucose in ulcerative colitis . Gut 37 : 684 – 689 . doi: https://doi.org/10.1136/gut.37.5.684 . Cook , S. I , and J. H. Sellin . 1998 . Review article: Short chain fatty acids in health and disease . Aliment. Pharmacol. Ther. 12 : 499 – 507 . doi: https://doi.org/10.1046/j.1365-2036.1998.00337.x . Cuevas Montilla , E. , S. Hillebrand , A. Antezana , and P. Winterhalter . 2011 .