Multi-angle orthogonal differential polarization characteristics and application in polarization image fusion

图像融合 极化(电化学) 光学 线极化 物理 融合 加权 人工智能 计算机科学 计算机视觉 图像(数学) 化学 激光器 物理化学 哲学 语言学 声学
作者
Suxin Mo,Jin Duan,Wenxue Zhang,Xingyue Wang,Ju Liu,Xiaojiao Jiang
出处
期刊:Applied Optics [Optica Publishing Group]
卷期号:61 (32): 9737-9737 被引量:7
标识
DOI:10.1364/ao.472630
摘要

With the wide application of image fusion technology in target detection and other fields, the fusion of polarization images and other intensity images is becoming a research focus. Traditional polarization image fusion includes intensity, degree of linear polarization (DOLP), and angle of polarization (AOP). However, images of DOLP and AOP fusion cannot meet the requirements of outstanding positive characteristics. Therefore, we propose a method to calculate the polarization characteristics image that can reflect the difference of polarization characteristics of different materials. The method and process are as follows: First, the polarization detection angle is divided into several angle intervals, and the orthogonal difference characteristics (ODC) image of each interval is obtained by weighting and accumulating the AOP probability density of the angle in the interval and the correlation between images. Second, the ODC images are reconstructed in the gradient domain, and the multi-angle orthogonal differential polarization characteristics (MODPC) image is obtained. The MODPC image is fused with the visible intensity image, and the fusion results are evaluated by using image evaluation indexes such as contrast (C), average gradient (AG), image entropy (E), and peak signal-to-noise ratio (PSNR). The experimental results show that the MODPC and S0 fusion result images are superior to the DOLP and S0 fusion results in terms of subjective visual perception and objective indicators among the six classical fusion algorithms. The proposed MODPC image can be applied in target detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
masheng完成签到,获得积分10
1秒前
陈皮泡泡糖完成签到,获得积分20
1秒前
alpaca5完成签到,获得积分10
1秒前
1秒前
四夕水窖完成签到,获得积分10
1秒前
慢慢完成签到,获得积分10
1秒前
CipherSage应助冷静绿旋采纳,获得10
1秒前
JJ完成签到 ,获得积分10
2秒前
烟花应助北柑采纳,获得10
2秒前
2秒前
2秒前
3秒前
善学以致用应助明理夏槐采纳,获得10
3秒前
彭于彦祖发布了新的文献求助30
3秒前
大力猫咪完成签到,获得积分10
4秒前
是我sky0220完成签到,获得积分20
4秒前
藏识完成签到,获得积分10
5秒前
5秒前
5秒前
上官若男应助青易采纳,获得10
6秒前
6秒前
今麦郎发布了新的文献求助10
6秒前
7秒前
aa完成签到,获得积分10
7秒前
完美世界应助光亮的天真采纳,获得10
7秒前
不才完成签到,获得积分10
8秒前
benj完成签到,获得积分10
8秒前
飞快的珩完成签到,获得积分10
8秒前
ccdk2025完成签到,获得积分10
8秒前
9秒前
风中钥匙完成签到,获得积分10
9秒前
Joshua完成签到,获得积分10
9秒前
Dong完成签到 ,获得积分10
10秒前
wanci应助虚心的觅松采纳,获得10
10秒前
ZY完成签到,获得积分10
11秒前
11秒前
鳗鱼友灵发布了新的文献求助10
11秒前
是我sky0220发布了新的文献求助10
11秒前
缥缈幻翠应助liguanyu1078采纳,获得10
11秒前
小线团黑桃完成签到,获得积分10
12秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953688
求助须知:如何正确求助?哪些是违规求助? 3499494
关于积分的说明 11095814
捐赠科研通 3230038
什么是DOI,文献DOI怎么找? 1785859
邀请新用户注册赠送积分活动 869602
科研通“疑难数据库(出版商)”最低求助积分说明 801479