RGCNPPIS: A Residual Graph Convolutional Network for Protein-Protein Interaction Site Prediction

残余物 计算机科学 图形 人工智能 理论计算机科学 算法
作者
Jian Zhong,Haochen Zhao,Qichang Zhao,Ruikang Zhou,Lishen Zhang,Fei Guo,Jianxin Wang
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-9 被引量:1
标识
DOI:10.1109/tcbb.2024.3410350
摘要

Accurate identification of protein-protein interaction (PPI) sites is crucial for understanding the mechanisms of biological processes, developing PPI networks, and detecting protein functions. Currently, most computational methods primarily concentrate on sequence context features and rarely consider the spatial neighborhood features. To address this limitation, we propose a novel residual graph convolutional network for structure-based PPI site prediction (RGCNPPIS). Specifically, we use a GCN module to extract the global structural features from all spatial neighborhoods, and utilize the GraphSage module to extract local structural features from local spatial neighborhoods. To the best of our knowledge, this is the first work utilizing local structural features for PPI site prediction. We also propose an enhanced residual graph connection to combine the initial node representation, local structural features, and the previous GCN layer's node representation, which enables information transfer between layers and alleviates the over-smoothing problem. Evaluation results demonstrate that RGCNPPIS outperforms state-of-the-art methods on three independent test sets. In addition, the results of ablation experiments and case studies confirm that RGCNPPIS is an effective tool for PPI site prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
liu完成签到,获得积分10
1秒前
萤火之森给萤火之森的求助进行了留言
1秒前
飘飘完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
4秒前
灵巧的大开完成签到,获得积分10
5秒前
HHHSean发布了新的文献求助10
6秒前
zxd1999完成签到,获得积分10
6秒前
木易心完成签到,获得积分10
7秒前
香蕉觅云应助ernest采纳,获得30
7秒前
852应助坚定的语芙采纳,获得10
9秒前
10秒前
10秒前
11秒前
npknpk发布了新的文献求助10
11秒前
11秒前
端庄的煎蛋完成签到,获得积分0
12秒前
13秒前
陈泽宇发布了新的文献求助10
13秒前
瀚泛完成签到,获得积分10
13秒前
14秒前
14秒前
wuliumu发布了新的文献求助10
14秒前
鳗鱼飞船发布了新的文献求助10
15秒前
顺顺新悦发布了新的文献求助10
15秒前
15秒前
李健的小迷弟应助陈大海采纳,获得10
16秒前
16秒前
哭泣乌完成签到,获得积分10
17秒前
17秒前
大模型应助Yoo采纳,获得10
17秒前
daisies应助CHB只争朝夕采纳,获得20
18秒前
现代的访曼应助哈哈哈采纳,获得20
18秒前
Jennyylz发布了新的文献求助10
19秒前
口天吴发布了新的文献求助10
19秒前
20秒前
Han发布了新的文献求助10
21秒前
22发布了新的文献求助10
23秒前
鳗鱼飞船完成签到,获得积分10
23秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959482
求助须知:如何正确求助?哪些是违规求助? 3505709
关于积分的说明 11125517
捐赠科研通 3237592
什么是DOI,文献DOI怎么找? 1789239
邀请新用户注册赠送积分活动 871614
科研通“疑难数据库(出版商)”最低求助积分说明 802868