RGCNPPIS: A Residual Graph Convolutional Network for Protein-Protein Interaction Site Prediction

残余物 计算机科学 图形 人工智能 理论计算机科学 算法
作者
Jian Zhong,Haochen Zhao,Qichang Zhao,Ruikang Zhou,Lishen Zhang,Fei Guo,Jianxin Wang
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-9
标识
DOI:10.1109/tcbb.2024.3410350
摘要

Accurate identification of protein-protein interaction (PPI) sites is crucial for understanding the mechanisms of biological processes, developing PPI networks, and detecting protein functions. Currently, most computational methods primarily concentrate on sequence context features and rarely consider the spatial neighborhood features. To address this limitation, we propose a novel residual graph convolutional network for structure-based PPI site prediction (RGCNPPIS). Specifically, we use a GCN module to extract the global structural features from all spatial neighborhoods, and utilize the GraphSage module to extract local structural features from local spatial neighborhoods. To the best of our knowledge, this is the first work utilizing local structural features for PPI site prediction. We also propose an enhanced residual graph connection to combine the initial node representation, local structural features, and the previous GCN layer's node representation, which enables information transfer between layers and alleviates the over-smoothing problem. Evaluation results demonstrate that RGCNPPIS outperforms state-of-the-art methods on three independent test sets. In addition, the results of ablation experiments and case studies confirm that RGCNPPIS is an effective tool for PPI site prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
3秒前
完美世界应助专注忆寒采纳,获得10
3秒前
大个应助成就的水桃采纳,获得10
5秒前
weisan发布了新的文献求助30
5秒前
5秒前
6秒前
7秒前
charatanfeng发布了新的文献求助30
7秒前
ygr完成签到,获得积分0
7秒前
8秒前
9秒前
9秒前
10秒前
LYY完成签到,获得积分10
10秒前
10秒前
影魔发布了新的文献求助10
11秒前
11秒前
维多利亚少年完成签到,获得积分10
11秒前
11秒前
11秒前
12秒前
方董发布了新的文献求助10
12秒前
12秒前
12秒前
12秒前
12秒前
UU发布了新的文献求助10
12秒前
13秒前
13秒前
科研通AI2S应助ygr采纳,获得10
13秒前
13秒前
13秒前
Raine发布了新的文献求助10
14秒前
Blummer完成签到,获得积分10
14秒前
wjx发布了新的文献求助10
14秒前
14秒前
wjx发布了新的文献求助10
15秒前
wjx发布了新的文献求助10
15秒前
wjx发布了新的文献求助10
15秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3304647
求助须知:如何正确求助?哪些是违规求助? 2938674
关于积分的说明 8489391
捐赠科研通 2613136
什么是DOI,文献DOI怎么找? 1427148
科研通“疑难数据库(出版商)”最低求助积分说明 662899
邀请新用户注册赠送积分活动 647507