亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

RGCNPPIS: A Residual Graph Convolutional Network for Protein-Protein Interaction Site Prediction

残余物 计算机科学 图形 人工智能 理论计算机科学 算法
作者
Jian Zhong,Haochen Zhao,Qichang Zhao,Ruikang Zhou,Lishen Zhang,Fei Guo,Jianxin Wang
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-9 被引量:8
标识
DOI:10.1109/tcbb.2024.3410350
摘要

Accurate identification of protein-protein interaction (PPI) sites is crucial for understanding the mechanisms of biological processes, developing PPI networks, and detecting protein functions. Currently, most computational methods primarily concentrate on sequence context features and rarely consider the spatial neighborhood features. To address this limitation, we propose a novel residual graph convolutional network for structure-based PPI site prediction (RGCNPPIS). Specifically, we use a GCN module to extract the global structural features from all spatial neighborhoods, and utilize the GraphSage module to extract local structural features from local spatial neighborhoods. To the best of our knowledge, this is the first work utilizing local structural features for PPI site prediction. We also propose an enhanced residual graph connection to combine the initial node representation, local structural features, and the previous GCN layer's node representation, which enables information transfer between layers and alleviates the over-smoothing problem. Evaluation results demonstrate that RGCNPPIS outperforms state-of-the-art methods on three independent test sets. In addition, the results of ablation experiments and case studies confirm that RGCNPPIS is an effective tool for PPI site prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
Criminology34应助科研通管家采纳,获得10
10秒前
Criminology34应助科研通管家采纳,获得10
10秒前
Criminology34应助科研通管家采纳,获得10
10秒前
Criminology34应助科研通管家采纳,获得10
10秒前
kdjm688完成签到,获得积分10
10秒前
彭于晏应助蓝色牛马采纳,获得10
25秒前
36秒前
蓝色牛马发布了新的文献求助10
41秒前
56秒前
57秒前
9527完成签到,获得积分10
58秒前
Li发布了新的文献求助10
1分钟前
优美芸发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
量子星尘发布了新的文献求助30
1分钟前
1分钟前
科研通AI2S应助Li采纳,获得10
1分钟前
JamesPei应助Li采纳,获得10
1分钟前
1分钟前
2分钟前
田様应助ptyz霍建华采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
2分钟前
paradox完成签到 ,获得积分10
2分钟前
ptyz霍建华发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
3分钟前
3分钟前
噗愣噗愣地刚发芽完成签到 ,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5788626
求助须知:如何正确求助?哪些是违规求助? 5709683
关于积分的说明 15473737
捐赠科研通 4916631
什么是DOI,文献DOI怎么找? 2646497
邀请新用户注册赠送积分活动 1594168
关于科研通互助平台的介绍 1548580