Dynamic YOLO for small underwater object detection

计算机科学 水下 对象(语法) 目标检测 人工智能 计算机视觉 模式识别(心理学) 地质学 海洋学
作者
Jie Chen,Meng Joo Er
出处
期刊:Artificial Intelligence Review [Springer Nature]
卷期号:57 (7) 被引量:2
标识
DOI:10.1007/s10462-024-10788-1
摘要

Abstract The practical application of object detection inevitably encounters challenges posed by small objects. In underwater object detection, a crucial method for marine exploration, the presence of small objects in underwater environments significantly hampers the performance of detection. In this paper, a dynamic YOLO detector is proposed as a solution to alleviate this problem. Specifically, a light-weight backbone network is first constructed based on deformable convolution v3, with some specialized designs for small object detection. Secondly, a unified feature fusion framework based on channel-wise, scale-wise, and spatial-aware attention is proposed to fuse feature maps from different scales. This is particularly critical for detecting small objects since it allows us to fully exploit the enhanced capabilities offered by our proposed backbone network. Finally, a simple but effective detection head is designed to handle the conflict between classification and localization by disentangling and aligning the two tasks. Extensive experiments are conducted on benchmark datasets to demonstrate the effectiveness of the proposed model. Without bells and whistles, dynamic YOLO outperforms the recent state-of-the-art methods by a large margin of $$+\,0.8$$ + 0.8 AP and $$+\,1.8$$ + 1.8 $$\text {AP}_{S}$$ AP S on the DUO dataset. Experimental results on Pascal VOC and MS COCO datasets also demonstrate the superiority of the proposed method. At last, ablation studies are conducted on DUO dataset to validate the effectiveness and efficiency of each design in dynamic YOLO. Source code will be available at https://github.com/chenjie04/Dynamic-YOLO .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
2秒前
可靠板栗发布了新的文献求助10
2秒前
gyq关闭了gyq文献求助
3秒前
qinghong发布了新的文献求助10
3秒前
华仔应助小王爱看文献采纳,获得10
4秒前
灵巧觅山发布了新的文献求助10
4秒前
5秒前
6秒前
6秒前
roger发布了新的文献求助10
7秒前
bkagyin应助木木采纳,获得10
7秒前
8秒前
kais发布了新的文献求助10
8秒前
水若琳完成签到,获得积分10
9秒前
10秒前
yqwang发布了新的文献求助30
10秒前
yang发布了新的文献求助10
11秒前
领导范儿应助qinghong采纳,获得10
11秒前
左丘冬寒完成签到,获得积分10
11秒前
孤独梦安完成签到 ,获得积分10
11秒前
笑点低忆梅完成签到 ,获得积分10
12秒前
14秒前
15秒前
梁同学发布了新的文献求助10
16秒前
嗯哼应助daihq3采纳,获得20
18秒前
18秒前
18秒前
19秒前
yayyaya完成签到 ,获得积分10
19秒前
20秒前
李爱国应助doctor163采纳,获得10
20秒前
乐乐应助小柠檬采纳,获得10
20秒前
20秒前
KKWeng完成签到 ,获得积分10
20秒前
依依发布了新的文献求助10
21秒前
施施完成签到,获得积分10
23秒前
欢呼向露发布了新的文献求助10
24秒前
高分求助中
Sustainability in ’Tides Chemistry 1500
The ACS Guide to Scholarly Communication 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Handbook of the Mammals of the World – Volume 3: Primates 805
Ethnicities: Media, Health, and Coping 800
Gerard de Lairesse : an artist between stage and studio 500
Digging and Dealing in Eighteenth-Century Rome 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3069526
求助须知:如何正确求助?哪些是违规求助? 2723409
关于积分的说明 7481777
捐赠科研通 2370508
什么是DOI,文献DOI怎么找? 1257007
科研通“疑难数据库(出版商)”最低求助积分说明 609800
版权声明 596852