Dynamic YOLO for small underwater object detection

计算机科学 水下 对象(语法) 目标检测 人工智能 计算机视觉 模式识别(心理学) 地质学 海洋学
作者
Jie Chen,Meng Joo Er
出处
期刊:Artificial Intelligence Review [Springer Science+Business Media]
卷期号:57 (7) 被引量:14
标识
DOI:10.1007/s10462-024-10788-1
摘要

Abstract The practical application of object detection inevitably encounters challenges posed by small objects. In underwater object detection, a crucial method for marine exploration, the presence of small objects in underwater environments significantly hampers the performance of detection. In this paper, a dynamic YOLO detector is proposed as a solution to alleviate this problem. Specifically, a light-weight backbone network is first constructed based on deformable convolution v3, with some specialized designs for small object detection. Secondly, a unified feature fusion framework based on channel-wise, scale-wise, and spatial-aware attention is proposed to fuse feature maps from different scales. This is particularly critical for detecting small objects since it allows us to fully exploit the enhanced capabilities offered by our proposed backbone network. Finally, a simple but effective detection head is designed to handle the conflict between classification and localization by disentangling and aligning the two tasks. Extensive experiments are conducted on benchmark datasets to demonstrate the effectiveness of the proposed model. Without bells and whistles, dynamic YOLO outperforms the recent state-of-the-art methods by a large margin of $$+\,0.8$$ + 0.8 AP and $$+\,1.8$$ + 1.8 $$\text {AP}_{S}$$ AP S on the DUO dataset. Experimental results on Pascal VOC and MS COCO datasets also demonstrate the superiority of the proposed method. At last, ablation studies are conducted on DUO dataset to validate the effectiveness and efficiency of each design in dynamic YOLO. Source code will be available at https://github.com/chenjie04/Dynamic-YOLO .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助海岸采纳,获得10
1秒前
GOAT完成签到,获得积分10
3秒前
111完成签到,获得积分10
3秒前
127完成签到,获得积分10
4秒前
太叔文博发布了新的文献求助10
5秒前
科研321完成签到,获得积分10
6秒前
ANGEK发布了新的文献求助10
7秒前
科目三应助小小蜉蝣采纳,获得10
8秒前
自私的猫完成签到,获得积分10
8秒前
8秒前
搜集达人应助zhjwu采纳,获得10
9秒前
Jiayi完成签到 ,获得积分10
9秒前
9秒前
Ava应助自由冬天采纳,获得10
10秒前
精忠报国完成签到,获得积分10
11秒前
ding应助沉静的曼荷采纳,获得10
11秒前
glomming完成签到 ,获得积分10
14秒前
通宵不是熬夜完成签到,获得积分20
14秒前
14秒前
研友_VZG7GZ应助PZL采纳,获得10
14秒前
15秒前
ANGEK完成签到,获得积分10
16秒前
zk完成签到,获得积分10
16秒前
zz发布了新的文献求助10
17秒前
九转科研蛊完成签到,获得积分10
17秒前
Owen应助王先生采纳,获得10
18秒前
18秒前
慕青应助Jiao采纳,获得10
19秒前
健忘的飞雪完成签到,获得积分10
20秒前
洋芋锅巴发布了新的文献求助10
21秒前
22秒前
Coraline发布了新的文献求助20
23秒前
元友容完成签到 ,获得积分10
23秒前
Yn_发布了新的文献求助10
24秒前
25秒前
杰尼龟完成签到,获得积分10
26秒前
26秒前
26秒前
27秒前
30秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998752
求助须知:如何正确求助?哪些是违规求助? 3538216
关于积分的说明 11273702
捐赠科研通 3277200
什么是DOI,文献DOI怎么找? 1807436
邀请新用户注册赠送积分活动 883893
科研通“疑难数据库(出版商)”最低求助积分说明 810075