Dynamic YOLO for small underwater object detection

计算机科学 水下 对象(语法) 目标检测 人工智能 计算机视觉 模式识别(心理学) 地质学 海洋学
作者
Jie Chen,Meng Joo Er
出处
期刊:Artificial Intelligence Review [Springer Nature]
卷期号:57 (7) 被引量:4
标识
DOI:10.1007/s10462-024-10788-1
摘要

Abstract The practical application of object detection inevitably encounters challenges posed by small objects. In underwater object detection, a crucial method for marine exploration, the presence of small objects in underwater environments significantly hampers the performance of detection. In this paper, a dynamic YOLO detector is proposed as a solution to alleviate this problem. Specifically, a light-weight backbone network is first constructed based on deformable convolution v3, with some specialized designs for small object detection. Secondly, a unified feature fusion framework based on channel-wise, scale-wise, and spatial-aware attention is proposed to fuse feature maps from different scales. This is particularly critical for detecting small objects since it allows us to fully exploit the enhanced capabilities offered by our proposed backbone network. Finally, a simple but effective detection head is designed to handle the conflict between classification and localization by disentangling and aligning the two tasks. Extensive experiments are conducted on benchmark datasets to demonstrate the effectiveness of the proposed model. Without bells and whistles, dynamic YOLO outperforms the recent state-of-the-art methods by a large margin of $$+\,0.8$$ + 0.8 AP and $$+\,1.8$$ + 1.8 $$\text {AP}_{S}$$ AP S on the DUO dataset. Experimental results on Pascal VOC and MS COCO datasets also demonstrate the superiority of the proposed method. At last, ablation studies are conducted on DUO dataset to validate the effectiveness and efficiency of each design in dynamic YOLO. Source code will be available at https://github.com/chenjie04/Dynamic-YOLO .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
田様应助炙热的语海采纳,获得10
1秒前
HJM关闭了HJM文献求助
2秒前
共享精神应助工藤新一采纳,获得10
2秒前
Newky发布了新的文献求助10
2秒前
jia发布了新的文献求助10
4秒前
我讨厌文献综述完成签到 ,获得积分10
4秒前
三更笔舞发布了新的文献求助10
4秒前
6秒前
6秒前
Hw发布了新的文献求助10
6秒前
8秒前
小蘑菇应助机智的三国菌采纳,获得10
9秒前
ding应助害羞外套采纳,获得10
9秒前
9秒前
田様应助lichun410932采纳,获得10
10秒前
jia完成签到,获得积分10
10秒前
misa发布了新的文献求助10
11秒前
共享精神应助gqz采纳,获得10
12秒前
我能行完成签到,获得积分10
13秒前
Saunak发布了新的文献求助20
14秒前
jbhb发布了新的文献求助10
14秒前
15秒前
Moonlight完成签到,获得积分10
15秒前
16秒前
16秒前
炙热的语海完成签到,获得积分10
17秒前
18秒前
鳗鱼凡波发布了新的文献求助10
18秒前
wanci应助会会跑跑跑采纳,获得10
20秒前
知愈发布了新的文献求助10
20秒前
20秒前
20秒前
Jemezs发布了新的文献求助10
20秒前
21秒前
21秒前
22秒前
22秒前
23秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3310273
求助须知:如何正确求助?哪些是违规求助? 2943254
关于积分的说明 8513427
捐赠科研通 2618482
什么是DOI,文献DOI怎么找? 1431111
科研通“疑难数据库(出版商)”最低求助积分说明 664374
邀请新用户注册赠送积分活动 649557